Error analysis for spectral approximation of the Korteweg-de Vries equation

Y. Maday; A. Quarteroni

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1988)

  • Volume: 22, Issue: 3, page 499-529
  • ISSN: 0764-583X

How to cite

top

Maday, Y., and Quarteroni, A.. "Error analysis for spectral approximation of the Korteweg-de Vries equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 22.3 (1988): 499-529. <http://eudml.org/doc/193540>.

@article{Maday1988,
author = {Maday, Y., Quarteroni, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Korteweg-de Vries equation; conservation; convergence; spectral Fourier methods; collocation pseudospectral method; spectral Galerkin method},
language = {eng},
number = {3},
pages = {499-529},
publisher = {Dunod},
title = {Error analysis for spectral approximation of the Korteweg-de Vries equation},
url = {http://eudml.org/doc/193540},
volume = {22},
year = {1988},
}

TY - JOUR
AU - Maday, Y.
AU - Quarteroni, A.
TI - Error analysis for spectral approximation of the Korteweg-de Vries equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1988
PB - Dunod
VL - 22
IS - 3
SP - 499
EP - 529
LA - eng
KW - Korteweg-de Vries equation; conservation; convergence; spectral Fourier methods; collocation pseudospectral method; spectral Galerkin method
UR - http://eudml.org/doc/193540
ER -

References

top
  1. [1] C. BARDOS, Historique sommaire de l'équation de Korteweg-de Vries. Un exemple de l'interaction entre les mathématiques pures et appliques ; Publ. n°45 (1983), Université deParis Nord. MR828857
  2. [2] C. BARDOS, Ondes solitaires et solitons ; Boll. U.M.I. 5, 16-A(1979), pp. 21-47. Zbl0402.35078MR530128
  3. [3] J. L. BONA, V. A. DOUGALIS & O. A. KARAKASHIAN, Fully discrete Galerkin methods for the Korteweg-de Vries équation, to appear in Comput. and Math. with applications 12 A. Zbl0597.65072MR855787
  4. [4] J. L. BONA, W. G. PRITCHARD & L. R. SCOTT, Numerical schemes for a model nonlinear, dispersive wave ; to appear in J. Comput. Phys. Zbl0578.65120MR805869
  5. [5] J. L. BONA & R. SMITH, The nitial value problem for the Korteweg-de Vries equations ; Phil. Roy. Soc. London, 278 (1975), pp. 555-604. Zbl0306.35027MR385355
  6. [6] C. CANUTO, M. Y. HUSSAINI, A. QUARTERONI & T. A. ZANG, Spectral Methods in Fluid Dynamics ; Springer-Verlag, Berlin, 1988. Zbl0658.76001MR917480
  7. [7] T. F. CHAN & T. KERKHOVEN, Fourier methods with extended stability intervals for the Korteweg-de Vries equation; S.I.A.M. J. Numer. Anal. 22 (1985), pp. 441-454. Zbl0571.65082MR787569
  8. [8] B. FORNBERG, Numerical computation of nonlinear waves ; Technical Report Plenum, Nonlinear Phenomena in Physics and Biology (1981). Zbl0525.65074MR749954
  9. [9] B. FORNBERG & F. R. S. WHITHAM, A numerical and theoretical study of certain nonlinear phenomena ; Phil. Trans. Roy. Soc. 289 (1978), pp. 373-404. Zbl0384.65049MR497916
  10. [10] D. JACKSON, The Theory of Approximation, A.M. S. Colloquium publications, vol. XI (1930), New York. Zbl56.0936.01JFM56.0936.01
  11. [11] D. J. KORTEWEG & G. DE VRIES, On the change of form of long waves advancing in rectangular canal, and on a new type of long stationary waves ; Philos. Mag. (1895), pp. 422-443. Zbl26.0881.02JFM26.0881.02
  12. [12] J. L. LIONS & E. MAGENES, Honhomogeneous Boundary Value Problems and Applications, Vol. I, Springer Verlag (1972), Berlin, Heildelberg and New-York. Zbl0223.35039
  13. [13] M. HE PING & G. BEN YU, The Fourier pseudospectral method with a restrain operator for the Korteweg-deVries equation, J. Comp. Phys. 65 (1986), pp. 120-137. Zbl0589.65077MR848450
  14. [14] R. M. MURA, Korteweg-de Vries equation and generalization. I. A remarkable explicit nonlinear transformation ; J. Math. Phys. 9 (1968), pp. 1202-1204. Zbl0283.35018MR252825
  15. [15] R. M. MUIRA, The Korteweg-de Vries equation : A survey of results ; S.I.A.M. Review 18 (1976), pp. 412-459. Zbl0333.35021
  16. [16] R. M. MIURA, C. S. GARDNER & M. D. KRUSKAL ; Korteweg-de Vries equation and generalization. II. Existence of conservation laws and constants of motion ; J. Math. Phys. 9 (1968), pp. 1204-1209. Zbl0283.35019MR252826
  17. [17] J. E. PASCIAK, Spectral and pseudo-spectral methods for advection equation ; Math. comput. 35 (1980), pp. 1081-1092. Zbl0448.65071MR583488
  18. [18] J. E. PASCIAK, Spectral method for a nonlinear initial value problem involving pseudo-differential operators ; S.I.A.M. J. Numer. Maths., 19, 1982, pp. 142-154. Zbl0489.65061MR646600
  19. [19] A. QUARTERONI, Fourier spectral methods for pseudo-parabolic equations ; S.I.A.M. J. Numer. Anal. 24 (1987), pp. 323-335. Zbl0621.65120MR881367
  20. [20] H. SCHAMEL & K. ELSÄSSER, The application of spectral method to nonlinear wave propagation, J. Comp. Phys. 22 (1976), pp. 501-516. Zbl0344.65055MR449164
  21. [21] F. TAPPERT, Numerical solution of the Korteweg-de Vries equation and its generalizations by the split-step Fourier method, in Lecture in Nonlinear wave Motion, A.C. Newell, ed., Applied Mathematics, vol. 15,A.M.S., Providence, Rhode Island (1974), pp. 215-217. Zbl0292.35046
  22. [22] R. TÉMAM, Sur un problème non linéaire; J. Math. Pures Appl. 48 (1969), pp. 159-172. Zbl0187.03902MR261183

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.