On the simulation of incompressible, miscible displacement in a naturally fractured petroleum reservoir

Todd Arbogast

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 1, page 5-51
  • ISSN: 0764-583X

How to cite

top

Arbogast, Todd. "On the simulation of incompressible, miscible displacement in a naturally fractured petroleum reservoir." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.1 (1989): 5-51. <http://eudml.org/doc/193553>.

@article{Arbogast1989,
author = {Arbogast, Todd},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {double porosity/permeability model; incompressible, miscible displacement; naturally fractured petroleum reservoir; matrix block; parabolic concentration equation; matrix/fracture fluid transfer; boundary conditions; finite element procedure; mixed methods; fracture concentration equation; standard Galerkin methods},
language = {eng},
number = {1},
pages = {5-51},
publisher = {Dunod},
title = {On the simulation of incompressible, miscible displacement in a naturally fractured petroleum reservoir},
url = {http://eudml.org/doc/193553},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Arbogast, Todd
TI - On the simulation of incompressible, miscible displacement in a naturally fractured petroleum reservoir
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 1
SP - 5
EP - 51
LA - eng
KW - double porosity/permeability model; incompressible, miscible displacement; naturally fractured petroleum reservoir; matrix block; parabolic concentration equation; matrix/fracture fluid transfer; boundary conditions; finite element procedure; mixed methods; fracture concentration equation; standard Galerkin methods
UR - http://eudml.org/doc/193553
ER -

References

top
  1. [1] T. ARBOGAST, Analysis of the simulation of single phase flow through a naturally fractured reservoir, SIAM J. Numer. Anal. 26 (1989) (to appear). Zbl0668.76130MR977946
  2. [2] T. ARBOGAST, The double porosity model for single phase flow in naturally fractured reservoirs, in Numerical Simulation in Oil Recovery, M. F. Wheeler, ed., The IMA Volumes in Mathematics and its Applications 11, Springer-Verlag, Berlin and New York, 1988, pp. 23-45. Zbl0701.76094MR922955
  3. [3] T. ARBOGAST, Simulation of incompressible, miscible displacement in a naturally fractured petroleum reservoir, Ph. D. Thesis, The University of Chicago, Chicago, Illinois, 1987. 
  4. [4] T. ARBOGAST, J. Jr. DOUGLAS and J. E. SANTOS, Two-phase immiscible flow in naturally fractured reservoirs, in Numerical Simulation in Oil Recovery, M. F. Wheeler, ed., the IMA Volumes in Mathematics and its Applications 11, Springer-Verlag, Berlin and New York, 1988, pp. 47-66. Zbl0699.76103MR922956
  5. [5] G. I. BARENBLATT, Iu. P. ZHELTOV and I. N. KOCHINA, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], Prikl. Mat. Mekh., 24 (1960), pp. 852-864 ; J. Appl. Math. Mech., 24 (1960), pp.1286-1303. Zbl0104.21702
  6. [6] F. BREZZI, J. Jr. DOUGLAS, R. DURÁN, and M. FORTIN, Mixed finite elements for second order elliptic problems in three variables, Numer. Math., 51 (1987), pp. 237-250. Zbl0631.65107MR890035
  7. [7] F. BREZZI, J. Jr. DOUGLAS, M. FORTIN, and L. D. MARINI, Efficient rectangular mixed finite elements in two and three space variables, R.A.I.R.O. Modél. Math. Anal. Numér., 21 (1987), pp. 581-604. Zbl0689.65065MR921828
  8. [8] J. Jr. DOUGLAS, Numerical methods for the flow of miscible fluids in porous media, in Numerical Methods in Coupled Systems, R. W. Lewis, P. Bettes, and E. Hinton, eds., John Wiley and Sons Ltd, London, 1984, pp. 405-439. Zbl0585.76138
  9. [9] J. Jr. DOUGLAS, R. E. EWING, and M. F. WHEELER, The approximation of the pressure by a mixed method in the simulation of miscible displacement, R.A.I.R.O. Anal. Numér., 17 (1983), pp. 17-33. Zbl0516.76094MR695450
  10. [10] J. Jr. DOUGLAS, R. E. EWING, and M. F. WHEELER, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, R.A.I.R.O. Anal. Numér., 17 (1983), pp. 249-265. Zbl0526.76094MR702137
  11. [11] J. Jr. DOUGLAS, P. J. PAES LEME, T. ARBOGAST, and T. SCHMITT, Simulation of flow in naturally fractured reservoirs, Paper SPE 16019, in Proceedings, Ninth SPE Symposium on Reservoir Simulation, Society of Petroleum Engineers, Dallas, Texas, 1987, pp. 271-279. 
  12. [12] J. Jr. DOUGLAS, and J. E. ROBERTS, Global estimates for mixed methods for second order elliptic equations, Math. Comp., 44 (1985), pp. 39-52. Zbl0624.65109MR771029
  13. [13] J. Jr. DOUGLAS, and T. F. RUSSELL, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19 (1982), pp. 871-885. Zbl0492.65051MR672564
  14. [14] J. Jr. DOUGLAS, M. F. WHEELER, B. L. DARLOW, and R. P. KENDALL, Self-adaptive finite element simulation of miscible displacement in porous media, Comp. Meth. Appl. Mech. Eng., 47 (1984), pp. 131-159. Zbl0545.76128
  15. [15] J. Jr. DOUGLAS, and Y. YUAN, Numerical simulation of immiscible flow in porous media based on combining the method of characteristics with mixed finite element procedures, in Numerical Simulation in Oil Recovery, M. F. Wheeler, ed., The IMA Volumes in Mathematics and its Applications 11, Springer-Verlag, Berlin and New York, 1988, pp. 119-131. Zbl0699.76105MR922962
  16. [16] R. DURÁN, On the approximation of miscible displacement in porous media by a method of characteristics combined with a mixed method, SIAM J. Numer. Anal., 25 (1988), pp. 989-1001. Zbl0661.76096MR960861
  17. [17] R. E. EWING, T. F. RUSSELL, and M. F. WHEELER, Simulation of miscible displacement using mixed methods and a modified method of characteristics, Paper SPE 12241, in Proceedings, Seventh SPE Symposium on Reservoir Simulation, Society of Petroleum Engineers, Dallas, Texas, 1983, pp. 71-81. 
  18. [18] R. E. EWING, T. F. RUSSELL, and M. F. WHEELER, Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comp. Meth. Appl. Mech. Eng., 47 (1984), pp. 73-92. Zbl0545.76131MR777394
  19. [19] R. E. EWING and M. F. WHEELER, Galerkin methods for miscible displacement problems in porous media, SIAM J. Numer. Anal., 17 (1980), pp. 351-365. Zbl0458.76092MR581482
  20. [20] R. E. EWING and M. F. WHEELER, Galerkin methods for miscible displacement problems with point sources and sinks-unit mobility ratio case, in Mathematical Methods in Energy Research, K. I. Gross, ed., Society for Industrial and Applied Mathematics, Philadelphia, 1984, pp. 40-58. Zbl0551.76079MR790511
  21. [21] H. KAZEMI, Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution, Soc. Pet. Eng. J. (1969), pp. 451-462. 
  22. [22] J. C. NEDELEC, Mixed finite elements in R3, Numer. Math., 35 (1980), pp. 315-341. Zbl0419.65069MR592160
  23. [23] D. W. PEACEMAN, Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement, Soc. Pet. Eng. J. (1966), pp. 213-216. 
  24. [24] P. A. RAVIART and J. M. THOMAS, A mixed finite element method for 2nd order elliptic problems, in Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics 606, Springer-Verlag, Berlin and New York, 1977, pp. 292-315. Zbl0362.65089MR483555
  25. [25] T. F. RUSSELL, Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media, SIAM J. Numer. Anal., 22 (1985), pp. 970-1013. Zbl0594.76087MR799124
  26. [26] P. H. SAMMON, Numerical approximations for a miscible displacement process in porous media, SIAM J. Numer. Anal., 23 (1986), pp. 508-542. Zbl0608.76084MR842642
  27. [27] F. SONIER, P. SOUILLARD, and F. T. BLASKOVICH, Numerical simulation of naturally fractured reservoirs, Paper SPE 15627, in Proceedings, 61st Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Society of Petroleum Engineers, Dallas, Texas, 1986. 
  28. [28] A. DE SWAAN O., Analytic solutions for determining naturally fractured reservoirs properties by well testing, Soc. Pet. Eng. J. (1976), pp. 117-122. 
  29. [29] J. E. WARREN and P. J. ROOT, The behavior of naturally fractured reservoirs, Soc. Pet. Eng. J. (1963), pp. 245-255. 
  30. [30] M. F. WHEELER, A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10 (1973), pp. 723-759. Zbl0232.35060MR351124

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.