Stability of schemes for the numerical treatment of an equation modelling fluidized beds
L. Abia; I. Christie; J. M. Sanz-Serna
- Volume: 23, Issue: 2, page 191-204
- ISSN: 0764-583X
Access Full Article
topHow to cite
topAbia, L., Christie, I., and Sanz-Serna, J. M.. "Stability of schemes for the numerical treatment of an equation modelling fluidized beds." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.2 (1989): 191-204. <http://eudml.org/doc/193556>.
@article{Abia1989,
author = {Abia, L., Christie, I., Sanz-Serna, J. M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {periodic initial value problem; fluidized bed modelling; unconditionally unstable},
language = {eng},
number = {2},
pages = {191-204},
publisher = {Dunod},
title = {Stability of schemes for the numerical treatment of an equation modelling fluidized beds},
url = {http://eudml.org/doc/193556},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Abia, L.
AU - Christie, I.
AU - Sanz-Serna, J. M.
TI - Stability of schemes for the numerical treatment of an equation modelling fluidized beds
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 2
SP - 191
EP - 204
LA - eng
KW - periodic initial value problem; fluidized bed modelling; unconditionally unstable
UR - http://eudml.org/doc/193556
ER -
References
top- [1] CHRISTIE and G. H. GANSER, A numerical study of nonlinear waves arising in a one-dimensional model of a fluidized bed, J. Comput. Phys. (to appear). Zbl0662.76030MR994350
- [2] J. DE FRUTOS and J. M. SANZ-SERNA, h-dependent thresholds avoid the need for a priori bounds in nonlinear convergence proofs, Proceedings of the Third International Conference on Numerical Analysis and its Applications, January 1988, Benin, City, Nigeria. Edited by Simeon Ola Fatunla (to appear).
- [3] G. H GANSER and D. A. DREW, Nonlinear analysis of a uniform fluidized bed, submitted. Zbl1134.76544
- [4] G. H GANSER and D. A. DREW, Nonlinear periodic waves in a two-phase flow model, SIAM J. Appl. Math 47 (1987), pp. 726-736. Zbl0634.76100MR898830
- [5] R. D. GRIGORIEFF, Numerik gewohnlicher Differentialgleichungen, Teubner, Stuttgart, 1972. Zbl0249.65051MR468207
- [6] C. PALENCIA and J. M. SANZ-SERNA, Equivalence theorems for incomplete spaces : an appraisal, IMA J. Numer. Anal. 4 (1984), pp. 109-115. Zbl0559.65033MR740788
- [7] J. M. SANZ-SERNA and C. PALENCIA, A general equivalence theorem in the theory of discretization methods, Math. Comput. 45 (1985), pp. 143-152. Zbl0599.65034MR790648
- [8] J. M. SANZ-SERNA and J. G. VERWER, Stability and convergence in the PDE/stiff ODE interface, Appl. Numer. Math. (to appear). Zbl0671.65078MR979551
- [9] V. THOMEE, Stability theory for partial difference operators. SIAM Rev. 11 (1969), pp. 152-195. Zbl0176.09101MR250505
- [10] F. VADILLO and J. M. SANZ-SERNA, Studies in numerical nonlinear instability in a new look at u1 + uur = 0, J. Comput. Phys. 66 (1986), pp. 225-238. Zbl0612.65053MR865708
- [11] G. VERWER and J. M. SANZ-SERNA, Convergence of method of lines approximations to partial differential equations, Computing 33 (1984), pp. 297-313. Zbl0546.65064MR773930
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.