On a class of implicit and explicit schemes of Van-Leer type for scalar conservation laws

A. Chalabi; J. P. Vila

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 2, page 261-282
  • ISSN: 0764-583X

How to cite

top

Chalabi, A., and Vila, J. P.. "On a class of implicit and explicit schemes of Van-Leer type for scalar conservation laws." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.2 (1989): 261-282. <http://eudml.org/doc/193559>.

@article{Chalabi1989,
author = {Chalabi, A., Vila, J. P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {convergence; second order accurate schemes; entropy solution; scalar conservation laws; total variation diminishing schemes; corrected upwind schemes},
language = {eng},
number = {2},
pages = {261-282},
publisher = {Dunod},
title = {On a class of implicit and explicit schemes of Van-Leer type for scalar conservation laws},
url = {http://eudml.org/doc/193559},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Chalabi, A.
AU - Vila, J. P.
TI - On a class of implicit and explicit schemes of Van-Leer type for scalar conservation laws
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 2
SP - 261
EP - 282
LA - eng
KW - convergence; second order accurate schemes; entropy solution; scalar conservation laws; total variation diminishing schemes; corrected upwind schemes
UR - http://eudml.org/doc/193559
ER -

References

top
  1. [1] D. L. BOOK, J. P. BORIS and K. HAIN, Flux-Corrected-Transport II Generalisation of the method, J. of Comp. Phys., 18 (1975), pp 248-283. Zbl0306.76004
  2. [2] B. ENGQUIST and S. OSHER, Stable and entropy condition satisfying approximations for transonic flow calculations, Math. Comp., 34 (1980), pp 45-75. Zbl0438.76051MR551290
  3. [3] A. HARTEN, On a class of high resolution total-variation stable finite difference schemes, SIAM J. of Numer. Anal. 21, 1 (1984), pp. 1-23. Zbl0547.65062MR731210
  4. [4] A. Y. LE ROUX, Convergence of an accurate scheme for first order quasi-linear equations, R.A.I.R.O. Analyse Numérique 15, 2 (1981), pp 151-170. Zbl0474.65073MR618820
  5. [5] A. MAJDA and S. OSHER, Numerical viscosity and the entropy condition, Comm. Pure Appl. Math. 32 (1979), pp 797-834. Zbl0405.76021MR539160
  6. [6] M. S. MOCK, Some higher order difference schemes enforcing an entropy inequality, Michigan Math. J. 25 (1978), pp. 325-344. Zbl0377.65049MR512903
  7. [7] S. OSHER and S. CHAKRAVARTHY, High resolution schemes and the entropy condition, SIAM J. Number. Anal. 21, 5 (1984), pp. 955-984. Zbl0556.65074MR760626
  8. [8] S. OSHER, Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal. 22, 5 (1985), pp. 947-961. Zbl0627.35061MR799122
  9. [9] B. VAN-LEER, Towards the ultimate conservative scheme-5, J. of Comput. Phys. 32, 1 (1979), pp. 101-136. MR1703646
  10. [10] J. P. VILA, Sur la théorie et l'approximation numérique des problèmes hyperboliques non lineaire Applications aux équations de Saint-Venant et a la modélisation des avalanches de neige dense, Thesis, Paris 6 (1986). 
  11. [11] J. P. VILA, High order schemes and entropy condition for nonlinear hyperbolic Systems of conservation laws, Math. of Comp., 50, 181 (1988), 53-73. Zbl0644.65058MR917818
  12. [12] J. P. VILA, P1-methods for the approximation of the conservation laws, To appear in SIAMNUM. 

NotesEmbed ?

top

You must be logged in to post comments.