On a class of implicit and explicit schemes of Van-Leer type for scalar conservation laws

A. Chalabi; J. P. Vila

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 2, page 261-282
  • ISSN: 0764-583X

How to cite

top

Chalabi, A., and Vila, J. P.. "On a class of implicit and explicit schemes of Van-Leer type for scalar conservation laws." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.2 (1989): 261-282. <http://eudml.org/doc/193559>.

@article{Chalabi1989,
author = {Chalabi, A., Vila, J. P.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {convergence; second order accurate schemes; entropy solution; scalar conservation laws; total variation diminishing schemes; corrected upwind schemes},
language = {eng},
number = {2},
pages = {261-282},
publisher = {Dunod},
title = {On a class of implicit and explicit schemes of Van-Leer type for scalar conservation laws},
url = {http://eudml.org/doc/193559},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Chalabi, A.
AU - Vila, J. P.
TI - On a class of implicit and explicit schemes of Van-Leer type for scalar conservation laws
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 2
SP - 261
EP - 282
LA - eng
KW - convergence; second order accurate schemes; entropy solution; scalar conservation laws; total variation diminishing schemes; corrected upwind schemes
UR - http://eudml.org/doc/193559
ER -

References

top
  1. [1] D. L. BOOK, J. P. BORIS and K. HAIN, Flux-Corrected-Transport II Generalisation of the method, J. of Comp. Phys., 18 (1975), pp 248-283. Zbl0306.76004
  2. [2] B. ENGQUIST and S. OSHER, Stable and entropy condition satisfying approximations for transonic flow calculations, Math. Comp., 34 (1980), pp 45-75. Zbl0438.76051MR551290
  3. [3] A. HARTEN, On a class of high resolution total-variation stable finite difference schemes, SIAM J. of Numer. Anal. 21, 1 (1984), pp. 1-23. Zbl0547.65062MR731210
  4. [4] A. Y. LE ROUX, Convergence of an accurate scheme for first order quasi-linear equations, R.A.I.R.O. Analyse Numérique 15, 2 (1981), pp 151-170. Zbl0474.65073MR618820
  5. [5] A. MAJDA and S. OSHER, Numerical viscosity and the entropy condition, Comm. Pure Appl. Math. 32 (1979), pp 797-834. Zbl0405.76021MR539160
  6. [6] M. S. MOCK, Some higher order difference schemes enforcing an entropy inequality, Michigan Math. J. 25 (1978), pp. 325-344. Zbl0377.65049MR512903
  7. [7] S. OSHER and S. CHAKRAVARTHY, High resolution schemes and the entropy condition, SIAM J. Number. Anal. 21, 5 (1984), pp. 955-984. Zbl0556.65074MR760626
  8. [8] S. OSHER, Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal. 22, 5 (1985), pp. 947-961. Zbl0627.35061MR799122
  9. [9] B. VAN-LEER, Towards the ultimate conservative scheme-5, J. of Comput. Phys. 32, 1 (1979), pp. 101-136. MR1703646
  10. [10] J. P. VILA, Sur la théorie et l'approximation numérique des problèmes hyperboliques non lineaire Applications aux équations de Saint-Venant et a la modélisation des avalanches de neige dense, Thesis, Paris 6 (1986). 
  11. [11] J. P. VILA, High order schemes and entropy condition for nonlinear hyperbolic Systems of conservation laws, Math. of Comp., 50, 181 (1988), 53-73. Zbl0644.65058MR917818
  12. [12] J. P. VILA, P1-methods for the approximation of the conservation laws, To appear in SIAMNUM. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.