Asymptotic behaviour of strongly damped nonlinear hyperbolic equations
- Volume: 23, Issue: 3, page 379-384
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBiler, Piotr. "Asymptotic behaviour of strongly damped nonlinear hyperbolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.3 (1989): 379-384. <http://eudml.org/doc/193566>.
@article{Biler1989,
author = {Biler, Piotr},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {evolution equation; asymptotic behaviour of solutions; evolution equations; damped vibrations; Klein-Gordon equations},
language = {eng},
number = {3},
pages = {379-384},
publisher = {Dunod},
title = {Asymptotic behaviour of strongly damped nonlinear hyperbolic equations},
url = {http://eudml.org/doc/193566},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Biler, Piotr
TI - Asymptotic behaviour of strongly damped nonlinear hyperbolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 3
SP - 379
EP - 384
LA - eng
KW - evolution equation; asymptotic behaviour of solutions; evolution equations; damped vibrations; Klein-Gordon equations
UR - http://eudml.org/doc/193566
ER -
References
top- [1] P. AVILES, J. SANDEFUR, Nonlinear second order equations with applications to partial differential equations, J. Diff. Eq., 58 (1985) 404-427. Zbl0572.34004MR797319
- [2] J. D. AVRIN, Convergence properties of the strongly damped nonlinear Klein-Gordon equation, J. Diff. Eq., 67 (1987) 243-255. Zbl0625.35058MR879695
- [3] P. BILER, Large time behaviour of periodic solutions to dissipative equations of Korteweg-de Vries-Burgers type, Bull. Pol. Ac. Sc. Math., 32 (1984) 401-405. Zbl0561.35065MR782755
- [4] P. BILER, Exponential decay of solutions of damped nonlinear hyperbolic equations, Nonlinear Analysis, 11 (1987) 841-849. Zbl0656.35091MR898578
- [5] P. BILER, A singular perturbation problem for nonlinear damped hyperbolic equations, Proc. Roy Soc. Edinburgh A, to appear. Zbl0701.35013MR985986
- [6] C. FOIAS, J.-C. SAUT, Asymptotic behavior, as t → + ∞, of solutions of Navier Stokes equations and nonlinear spectral manifolds, Indiana Univ. Math. J., 33 (1984) 459-477. Zbl0565.35087MR740960
- [7] J.-M. GHIDAGLIA, Long time behaviour of solutions of abstract inequalities applications to thermo-hydraulic and magnetohydrodynamic equations, J. Diff. Eq., 61 (1986) 268-294. Zbl0549.35102MR823404
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.