Time-discretization and inertial manifolds

F. Demengel; J. M. Ghidaglia

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 3, page 395-404
  • ISSN: 0764-583X

How to cite

top

Demengel, F., and Ghidaglia, J. M.. "Time-discretization and inertial manifolds." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.3 (1989): 395-404. <http://eudml.org/doc/193568>.

@article{Demengel1989,
author = {Demengel, F., Ghidaglia, J. M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {time-discretization; inertial manifolds; long time behaviour; infinite dimensional dynamical system; Complex amplitude equations; strongly dissipative perturbations; Korteweg-de Vries equation},
language = {eng},
number = {3},
pages = {395-404},
publisher = {Dunod},
title = {Time-discretization and inertial manifolds},
url = {http://eudml.org/doc/193568},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Demengel, F.
AU - Ghidaglia, J. M.
TI - Time-discretization and inertial manifolds
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 3
SP - 395
EP - 404
LA - eng
KW - time-discretization; inertial manifolds; long time behaviour; infinite dimensional dynamical system; Complex amplitude equations; strongly dissipative perturbations; Korteweg-de Vries equation
UR - http://eudml.org/doc/193568
ER -

References

top
  1. [1] F. DEMENGEL and J. M. GHIDAGLIA, Inertial manifolds for partial differential evolution equations under time-discretization : existence, convergence and applications, Preprint, Orsay, 1988 ; see also C.R. Acad. Sci. Paris, t. 307, Série I, 1988. Zbl0726.35056MR964105
  2. [2] F. DEMENGEL and J. M. GHIDAGLIA, Construction of inertial manifolds via the Lyapunov-Perron method, Compte rendu du Groupe de travail sur les variétés inertielles, Orsay, to appear. Zbl0723.58033
  3. [3] C. FOIAS, G. SELL and R. TEMAM, Inertial manifolds for nonlinear evolutionary equations, J. Diff. Equ., 73 (1988) 309-353. Zbl0643.58004MR943945
  4. [4] M. LUSKIN and G. R. SELL, Approximation théories for inertial manifolds, M2AN, vol. 23 (1983) n° 3, 445-461. Zbl0688.58035MR1014485
  5. [5] R. TEMAM, Infinite Dimensional Dynamical Systems in Mechanics and Physies, Springer, New-York, 1988. Zbl0662.35001MR953967
  6. [6] J. HALE, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs n° 25, A M.S., Providence, 1988. Zbl0642.58013MR941371

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.