Discrete Ljapunov functionals and -limit sets
- Volume: 23, Issue: 3, page 415-431
- ISSN: 0764-583X
Access Full Article
topHow to cite
topFiedler, Bernold. "Discrete Ljapunov functionals and $\omega $-limit sets." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.3 (1989): 415-431. <http://eudml.org/doc/193570>.
@article{Fiedler1989,
author = {Fiedler, Bernold},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {-limit sets; reaction-diffusion equation; discrete Lyapunov functional},
language = {eng},
number = {3},
pages = {415-431},
publisher = {Dunod},
title = {Discrete Ljapunov functionals and $\omega $-limit sets},
url = {http://eudml.org/doc/193570},
volume = {23},
year = {1989},
}
TY - JOUR
AU - Fiedler, Bernold
TI - Discrete Ljapunov functionals and $\omega $-limit sets
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 3
SP - 415
EP - 431
LA - eng
KW - -limit sets; reaction-diffusion equation; discrete Lyapunov functional
UR - http://eudml.org/doc/193570
ER -
References
top- S. ANGENENT 1, The Morse-Smale property for a semi linear parabolic equation, J. Diff. Eq. 62 (1986), 427-442. Zbl0581.58026MR837763
- S. ANGENENT 2, The zeroset of a solution of a parabolic equation, J. reine angew. Math. 390 (1988), 79-96. Zbl0644.35050MR953678
- S. ANGENENT & B. FIEDLER, The dynamics of rotating waves in scalar reaction diffusion equations, Trans. AMS 307 (1988), 545-568. Zbl0696.35086MR940217
- I. BENDIXSON, Sur les courbes définies par des équations différentielles, Acta Math. 24 (1901), 1-88. Zbl31.0328.03MR1554923JFM31.0328.03
- J. E. BILLOTI & J. P. LASALLE, Periodic dissipative processes, Bull. AMS 6 (1971), 1082-1089. Zbl0274.34061
- P. BRUNOVSKÝ & B. FIEDLER 1, Zero numbers on invariant manifolds in scalar reaction diffusion equations, Nonlin. Analysis TMA 10 (1986), 179-194. Zbl0594.35056MR825216
- P. BRUNOVSKÝ & B. FIEDLER 2, Connecting orbits in scalar reaction diffusion equations, Dynamics Reported, 1 (1988), 57-89. Zbl0679.35047MR945964
- P. BRUNOVSKÝ & B. FIEDLER 3, Connecting orbits in scalar reaction diffusion equations II, to appear in J. Diff. Eq. Zbl0699.35144MR945964
- E. A. CODDINGTON & N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill, New York 1955. Zbl0064.33002MR69338
- C. C. CONLEY & J. SMOLLER, Topological techniques in reaction diffusion equations, in « Biological Growth and Spread », Jäger & Rost & Tautu (eds.), Lect. Notes Biomath. 38, Springer-Verlag, Heidelberg 1980, 473-483. Zbl0444.35005MR609381
- C. M. DAFERMOS, Asymptotic behavior of solutions of evolution equations, in « Nonlinear Evolution Equations », M. G. Crandall (ed.), Academic Press, New York 1978, 103-123. Zbl0499.35015MR513814
- B. FIEDLER & J. MALLET-PARET 1, Connections between Morse sets for delay-differential equations, to appear in J. reine angew. Math. Zbl0659.34077MR993217
- B. FIEDLER & J. MALLET-PARET 2, A Poincaré-Bendixson theorem for scalar reaction diffusion equations, Arch. Rational Mech. Analysis, in press. Zbl0704.35070MR1004714
- J. K. HALE, Ordinary Differential Equations, John Wiley & Sons, New York 1969. Zbl0186.40901MR419901
- J. K. HALE & L. T. MAGALHĀES & W. M. OLIVA, An Introduction to Infinite imensional Dynamical Systems - Geometrie Theory, Appl. Math. Sc. 47, Springer-Verlag, New York 1984. Zbl0533.58001MR725501
- P. HARTMAN, Ordinary Differential Equations, Birkäuser, Boston 1982. Zbl0476.34002MR658490
- D. HENRY 1, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math. 840, Springer-Verlag, New York 1981. Zbl0456.35001MR610244
- D. HENRY 2, Some infinite dimensional Morse-Smale systems defined by parabolic differential equations, J. Diff. Eq. 59 (1985), 165-205. Zbl0572.58012MR804887
- M. W. HIRSCH 1, Differential equations and convergence almost everywhere in strongly monotone semiflows, in « Nonlinear Partial Differential Equations », J.Smoller (ed.), AMS, Providence 1983, 267-285. Zbl0523.58034MR706104
- M. W. HIRSCH 2, Systems of differential equations that are competitive or cooperative II. Convergence almost everywhere. SIAM J. Math. Anal. 16 (1985), 423-439. Zbl0658.34023MR783970
- M. W. HIRSCH 3, Stability and convergence in strongly monotone dynamical Systems, J. reine angew. Math. 383 (1988), 1-53. Zbl0624.58017MR921986
- J. L. KAPLAN & J. A. YORKE, On the stability of a periodic solution of a differential delay equation, SIAM J. Math. Anal. 6 (1975), 268-282. Zbl0241.34080MR361367
- S. LEFSCHETZ, Differential Equations : Geometric Theory, Wiley & Sons, New York 1963. Zbl0107.07101MR153903
- J. MALLET-PARET, 1 Morse decompositions and global continuation of periodic solutions for singularly perturbed delay equations, in « Systems of Nonlinear Partial Differential Equations », J. M. Ball (ed.), D. Reidel, Dordrecht 1983, 351-366. Zbl0562.34060MR725532
- J. MALLET-PARET 2, Morse decompositions for delay-differential equations, J. Diff. Eq. 72 (1988), 270-315. Zbl0648.34082MR932368
- J. MALLET-PARET & H. SMITH, A Poincaré-Bendixson theorem for monotone cyclic feedback Systems, preprint 1987. Zbl0712.34060MR1073471
- P. MASSATT, The convergence of scalar parabolic equations with convection to periodic solutions, preprint 1986.
- H. MATANO 1, Convergence of solutions of one-dimensional parabolic equations, J. Math. Kyoto Univ. 18 (1978), 221-227. Zbl0387.35008MR501842
- H. MATANO 2, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sec. IA 29 (1982), 401-441. Zbl0496.35011MR672070
- H. MATANO 3, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving Systems, J. Fac. Sc. Univ. Tokyo Sec. IA 30 (1984), 645-673. Zbl0545.35042MR731522
- H. MATANO 4, Asymptotic behavior of solutions of semilinear heat equations on S1, in « Nonlinear Diffusion equations and Their Equilibrium States », W.-M. Ni & B. Peletier & J. Serrin (eds.), Springer-Verlag, New York 1988, 139-162. Zbl0671.35039MR956085
- H. MATANO 5, Asymptotic behavior of nonlinear equations, Res. Notes Math., Pitman, to appear. Zbl0445.35063
- H. MATANO 6, Strongly order-preserving local semi-dynamical Systems - theory and applications, in « Semigroups, Theory and Applications », H. Brezis & M. G. Crandall & F. Kappel (eds.), John Wiley & Sons, New York 1986. Zbl0634.34031
- K. MISCHAIKOW, Conley's connection matrix, in « Dynamics of Infinite Dimensional Systems », S.-N. Chow & J. K. Hale (eds.), Springer-Verlag, Berlin 1987, 179-186. Zbl0655.34036MR921911
- K. NICKEL, Gestaltaussagen über Lösungen parabolischer Differentialgleichungen, J. reine angew. Math. 211 (1962), 78-94. Zbl0127.31801MR146534
- H. POINCARÉ, Œuvres I, Gauthier-Villars, Paris 1928.
- G. PÓLYA, Qualitatives über Wärmeausgleich, Z. Angew. Math. Mech. 13 (1933), 125-128. JFM59.0494.01
- SANSONE & R. CONTI, Non-Linear Differential Equations, Pergamon Press, Oxford 1964. Zbl0128.08403
- H. SMITH, Monotone semiflows generated by functional differential equations, J. Diff. Eq. 66 (1987), 420-442. Zbl0612.34067MR876806
- R. A. SMITH 1, The Poincaré-Bendixson theorem for certain differential equations of higher order, Proc. Roy. Soc. Edmburgh A 83 (1979), 63-79. Zbl0408.34042MR538586
- R. A. SMITH 2, Existence of periodic orbits of autonomous ordinary differential equations, Proc. Roy. Soc. Edmburgh A 85 (1980), 153-172. Zbl0429.34040MR566073
- R. A. SMITH 3, Existence of periodic orbits of autonomous retarded functional differential equations, Math. Proc. Camb. Phil. Soc. 88 (1980), 89-109. Zbl0435.34062MR569635
- J. SMOLLER, Shock Waves and Reaction Diffusion Equations, Springer-Verlag, New York 1983. Zbl0508.35002MR688146
- C. STURM, Sur une classe d'équations à différences partielles, J. Math. Pure Appl. 1 (1836), 373-444.
- T. I. ZELENYAK, Stabilization of solutions of boundary value problems for a second order prabolic equation with one space variable, Differential Equations 4, 1 (1968), 17-22. Zbl0232.35053MR223758
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.