Discrete Ljapunov functionals and ω -limit sets

Bernold Fiedler

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 3, page 415-431
  • ISSN: 0764-583X

How to cite

top

Fiedler, Bernold. "Discrete Ljapunov functionals and $\omega $-limit sets." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.3 (1989): 415-431. <http://eudml.org/doc/193570>.

@article{Fiedler1989,
author = {Fiedler, Bernold},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {-limit sets; reaction-diffusion equation; discrete Lyapunov functional},
language = {eng},
number = {3},
pages = {415-431},
publisher = {Dunod},
title = {Discrete Ljapunov functionals and $\omega $-limit sets},
url = {http://eudml.org/doc/193570},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Fiedler, Bernold
TI - Discrete Ljapunov functionals and $\omega $-limit sets
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 3
SP - 415
EP - 431
LA - eng
KW - -limit sets; reaction-diffusion equation; discrete Lyapunov functional
UR - http://eudml.org/doc/193570
ER -

References

top
  1. S. ANGENENT 1, The Morse-Smale property for a semi linear parabolic equation, J. Diff. Eq. 62 (1986), 427-442. Zbl0581.58026MR837763
  2. S. ANGENENT 2, The zeroset of a solution of a parabolic equation, J. reine angew. Math. 390 (1988), 79-96. Zbl0644.35050MR953678
  3. S. ANGENENT & B. FIEDLER, The dynamics of rotating waves in scalar reaction diffusion equations, Trans. AMS 307 (1988), 545-568. Zbl0696.35086MR940217
  4. I. BENDIXSON, Sur les courbes définies par des équations différentielles, Acta Math. 24 (1901), 1-88. Zbl31.0328.03MR1554923JFM31.0328.03
  5. J. E. BILLOTI & J. P. LASALLE, Periodic dissipative processes, Bull. AMS 6 (1971), 1082-1089. Zbl0274.34061
  6. P. BRUNOVSKÝ & B. FIEDLER 1, Zero numbers on invariant manifolds in scalar reaction diffusion equations, Nonlin. Analysis TMA 10 (1986), 179-194. Zbl0594.35056MR825216
  7. P. BRUNOVSKÝ & B. FIEDLER 2, Connecting orbits in scalar reaction diffusion equations, Dynamics Reported, 1 (1988), 57-89. Zbl0679.35047MR945964
  8. P. BRUNOVSKÝ & B. FIEDLER 3, Connecting orbits in scalar reaction diffusion equations II, to appear in J. Diff. Eq. Zbl0699.35144MR945964
  9. E. A. CODDINGTON & N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill, New York 1955. Zbl0064.33002MR69338
  10. C. C. CONLEY & J. SMOLLER, Topological techniques in reaction diffusion equations, in « Biological Growth and Spread », Jäger & Rost & Tautu (eds.), Lect. Notes Biomath. 38, Springer-Verlag, Heidelberg 1980, 473-483. Zbl0444.35005MR609381
  11. C. M. DAFERMOS, Asymptotic behavior of solutions of evolution equations, in « Nonlinear Evolution Equations », M. G. Crandall (ed.), Academic Press, New York 1978, 103-123. Zbl0499.35015MR513814
  12. B. FIEDLER & J. MALLET-PARET 1, Connections between Morse sets for delay-differential equations, to appear in J. reine angew. Math. Zbl0659.34077MR993217
  13. B. FIEDLER & J. MALLET-PARET 2, A Poincaré-Bendixson theorem for scalar reaction diffusion equations, Arch. Rational Mech. Analysis, in press. Zbl0704.35070MR1004714
  14. J. K. HALE, Ordinary Differential Equations, John Wiley & Sons, New York 1969. Zbl0186.40901MR419901
  15. J. K. HALE & L. T. MAGALHĀES & W. M. OLIVA, An Introduction to Infinite imensional Dynamical Systems - Geometrie Theory, Appl. Math. Sc. 47, Springer-Verlag, New York 1984. Zbl0533.58001MR725501
  16. P. HARTMAN, Ordinary Differential Equations, Birkäuser, Boston 1982. Zbl0476.34002MR658490
  17. D. HENRY 1, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math. 840, Springer-Verlag, New York 1981. Zbl0456.35001MR610244
  18. D. HENRY 2, Some infinite dimensional Morse-Smale systems defined by parabolic differential equations, J. Diff. Eq. 59 (1985), 165-205. Zbl0572.58012MR804887
  19. M. W. HIRSCH 1, Differential equations and convergence almost everywhere in strongly monotone semiflows, in « Nonlinear Partial Differential Equations », J.Smoller (ed.), AMS, Providence 1983, 267-285. Zbl0523.58034MR706104
  20. M. W. HIRSCH 2, Systems of differential equations that are competitive or cooperative II. Convergence almost everywhere. SIAM J. Math. Anal. 16 (1985), 423-439. Zbl0658.34023MR783970
  21. M. W. HIRSCH 3, Stability and convergence in strongly monotone dynamical Systems, J. reine angew. Math. 383 (1988), 1-53. Zbl0624.58017MR921986
  22. J. L. KAPLAN & J. A. YORKE, On the stability of a periodic solution of a differential delay equation, SIAM J. Math. Anal. 6 (1975), 268-282. Zbl0241.34080MR361367
  23. S. LEFSCHETZ, Differential Equations : Geometric Theory, Wiley & Sons, New York 1963. Zbl0107.07101MR153903
  24. J. MALLET-PARET, 1 Morse decompositions and global continuation of periodic solutions for singularly perturbed delay equations, in « Systems of Nonlinear Partial Differential Equations », J. M. Ball (ed.), D. Reidel, Dordrecht 1983, 351-366. Zbl0562.34060MR725532
  25. J. MALLET-PARET 2, Morse decompositions for delay-differential equations, J. Diff. Eq. 72 (1988), 270-315. Zbl0648.34082MR932368
  26. J. MALLET-PARET & H. SMITH, A Poincaré-Bendixson theorem for monotone cyclic feedback Systems, preprint 1987. Zbl0712.34060MR1073471
  27. P. MASSATT, The convergence of scalar parabolic equations with convection to periodic solutions, preprint 1986. 
  28. H. MATANO 1, Convergence of solutions of one-dimensional parabolic equations, J. Math. Kyoto Univ. 18 (1978), 221-227. Zbl0387.35008MR501842
  29. H. MATANO 2, Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation, J. Fac. Sci. Univ. Tokyo Sec. IA 29 (1982), 401-441. Zbl0496.35011MR672070
  30. H. MATANO 3, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving Systems, J. Fac. Sc. Univ. Tokyo Sec. IA 30 (1984), 645-673. Zbl0545.35042MR731522
  31. H. MATANO 4, Asymptotic behavior of solutions of semilinear heat equations on S1, in « Nonlinear Diffusion equations and Their Equilibrium States », W.-M. Ni & B. Peletier & J. Serrin (eds.), Springer-Verlag, New York 1988, 139-162. Zbl0671.35039MR956085
  32. H. MATANO 5, Asymptotic behavior of nonlinear equations, Res. Notes Math., Pitman, to appear. Zbl0445.35063
  33. H. MATANO 6, Strongly order-preserving local semi-dynamical Systems - theory and applications, in « Semigroups, Theory and Applications », H. Brezis & M. G. Crandall & F. Kappel (eds.), John Wiley & Sons, New York 1986. Zbl0634.34031
  34. K. MISCHAIKOW, Conley's connection matrix, in « Dynamics of Infinite Dimensional Systems », S.-N. Chow & J. K. Hale (eds.), Springer-Verlag, Berlin 1987, 179-186. Zbl0655.34036MR921911
  35. K. NICKEL, Gestaltaussagen über Lösungen parabolischer Differentialgleichungen, J. reine angew. Math. 211 (1962), 78-94. Zbl0127.31801MR146534
  36. H. POINCARÉ, Œuvres I, Gauthier-Villars, Paris 1928. 
  37. G. PÓLYA, Qualitatives über Wärmeausgleich, Z. Angew. Math. Mech. 13 (1933), 125-128. JFM59.0494.01
  38. SANSONE & R. CONTI, Non-Linear Differential Equations, Pergamon Press, Oxford 1964. Zbl0128.08403
  39. H. SMITH, Monotone semiflows generated by functional differential equations, J. Diff. Eq. 66 (1987), 420-442. Zbl0612.34067MR876806
  40. R. A. SMITH 1, The Poincaré-Bendixson theorem for certain differential equations of higher order, Proc. Roy. Soc. Edmburgh A 83 (1979), 63-79. Zbl0408.34042MR538586
  41. R. A. SMITH 2, Existence of periodic orbits of autonomous ordinary differential equations, Proc. Roy. Soc. Edmburgh A 85 (1980), 153-172. Zbl0429.34040MR566073
  42. R. A. SMITH 3, Existence of periodic orbits of autonomous retarded functional differential equations, Math. Proc. Camb. Phil. Soc. 88 (1980), 89-109. Zbl0435.34062MR569635
  43. J. SMOLLER, Shock Waves and Reaction Diffusion Equations, Springer-Verlag, New York 1983. Zbl0508.35002MR688146
  44. C. STURM, Sur une classe d'équations à différences partielles, J. Math. Pure Appl. 1 (1836), 373-444. 
  45. T. I. ZELENYAK, Stabilization of solutions of boundary value problems for a second order prabolic equation with one space variable, Differential Equations 4, 1 (1968), 17-22. Zbl0232.35053MR223758

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.