Inertial manifolds of damped semilinear wave equations

Xavier Mora; Joan Solà-Morales

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 3, page 489-505
  • ISSN: 0764-583X

How to cite

top

Mora, Xavier, and Solà-Morales, Joan. "Inertial manifolds of damped semilinear wave equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.3 (1989): 489-505. <http://eudml.org/doc/193574>.

@article{Mora1989,
author = {Mora, Xavier, Solà-Morales, Joan},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {global attractor; qualitative dynamics; semilinear damped wave equation},
language = {eng},
number = {3},
pages = {489-505},
publisher = {Dunod},
title = {Inertial manifolds of damped semilinear wave equations},
url = {http://eudml.org/doc/193574},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Mora, Xavier
AU - Solà-Morales, Joan
TI - Inertial manifolds of damped semilinear wave equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 3
SP - 489
EP - 505
LA - eng
KW - global attractor; qualitative dynamics; semilinear damped wave equation
UR - http://eudml.org/doc/193574
ER -

References

top
  1. [1] S. ANGENENT, The Morse-Smale property for a semilinear parabolic equation, J. Diff. Eq. 62 (1986), 427-442. Zbl0581.58026MR837763
  2. [2] A. V. BABIN, M. I. VISHIK, Uniform asymptotics of the solutions of singularly perturbed evolution equations (in russian), Uspekhi Mat. Nauk 42(5) (1987),231-232. 
  3. [3] S. N. CHOW, K. LU, Invariant manifolds for flows in Banach spaces, J. Diff. Eq. 74 (1988), 285-317. Zbl0691.58034MR952900
  4. [4] J. K. HALE, L. T. MAGALHÂES, W. M. OLIVA, An Introduction to Infinite Dimensional Dynamical Systems - Geometric Theory, Springer (1984). Zbl0533.58001MR725501
  5. [5] J. K. HALE, G. RAUGEL, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Eq. 73 (1988), 197-214. Zbl0666.35012MR943939
  6. [6] P. HARTMAN, On local homeomorphisms of Euclidean spaces, Bol. Soc, MatMexicana 5 (1960), 220-241. Zbl0127.30202MR141856
  7. [7] D. B. HENRY, Some infinite-dimensional Morse-Smale Systems defined byparabolic partial differential equations, J. Diff. Eq. 59 (1985), 165-205. Zbl0572.58012MR804887
  8. [8] X. MORA, Finite-dimensional attracting invariant manifolds for damped semilinear wave equations, Res. Notes in Math. 155 (1987), 172-183. Zbl0642.35061MR907731
  9. [9] X. MORA, J. SOLÀ-MORALES, Existence and non-existence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equations, in « Dynamics of Infinite Dimensional Systems » (edited by S. N. Chow, J. K. Hale), Springer (1987), 187-210. Zbl0642.35062MR921912
  10. [10] X. MORA, J. SOLÀ-MORALES, The singular limit dynamics of semilinear damped wave equations, J. Diff, Eq. 78 (1989), 262-307. Zbl0699.35177MR992148
  11. [11] A. VANDERBAUWHEDE, S. A. VAN GILS, Center manifolds and contractionson a scale of Banach spaces, J. Funct. Anal 72 (1987), 209-224. Zbl0621.47050MR886811

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.