Continuity of attractors

Geneviève Raugel

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 3, page 519-533
  • ISSN: 0764-583X

How to cite

top

Raugel, Geneviève. "Continuity of attractors." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.3 (1989): 519-533. <http://eudml.org/doc/193576>.

@article{Raugel1989,
author = {Raugel, Geneviève},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {attractors; upper-semicontinuity; lower-semicontinuity; parabolic equations; hyperbolic equations},
language = {eng},
number = {3},
pages = {519-533},
publisher = {Dunod},
title = {Continuity of attractors},
url = {http://eudml.org/doc/193576},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Raugel, Geneviève
TI - Continuity of attractors
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 3
SP - 519
EP - 533
LA - eng
KW - attractors; upper-semicontinuity; lower-semicontinuity; parabolic equations; hyperbolic equations
UR - http://eudml.org/doc/193576
ER -

References

top
  1. [1] A. V. BABIN, M. I. VISHIK (1), Regular attractors of semigroupsand evolution quations, J. Math. Pures et Appl. 62, pp. 441-491, 1983. Zbl0565.47045MR735932
  2. [2] A. V. BABIN, M. I. VISHIK (2), Unstable invariant sets of semigroups of nonlinear operators and their perturbations, Uspekhi Mat. Nauk 41, pp. 3-34, 1986, Russian Math. Surveys 41, pp. 1-41, 1986. Zbl0624.47065MR863873
  3. [3] P. BRUNOVSKY, S.-N. CHOW, Generic properties of stationary solutions of reaction-diffusion equations, J. Diff. Equat. 53, pp. 1-23, 1984. Zbl0544.34019MR747403
  4. [4] G. COOPERMAN, α-Condensing maps and dissipative systems, Ph. D. Thesis, Brown Umversity, Providence, R.I., June 1978. 
  5. [5] J. M. GHIDAGLIA, R. TEMAM, Attractors for damped nonlinear hyperbolic equations, J. Math. Pures et Appl., 66, pp. 273-319, 1987. Zbl0572.35071MR913856
  6. [6] J. K. HALE (1), Asymptotic behavior and dynamics in infinite dimensions, in Nonlinear Differential Equations, J. K. Hale and P. Martinez-Amores, Eds., Pittman 132, 1985. Zbl0653.35006
  7. [7] J. K. HALE (2), Asymptotic Behavior of Dissipative Systems, Surveys and Monographs, Vol. 25, A.M.S., Providence, R.I., 1988. Zbl0642.58013MR941371
  8. [8] J. K. HALE, X. B. LIN, G. RAUGEL, Upper-semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. of Comp., 50, pp. 89-123, 1988. Zbl0666.35013MR917820
  9. [9] J. K. HALE, L. MAGALHAES, W. OLIVA, An Introduction to Infinite Dimensional Dynamical Systems, Applied Math. Sciences, Vol. 47, Springer Verlag, 1984. Zbl0533.58001MR725501
  10. [10] J. K. HALE, G. RAUGEL (1), Upper-semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Equat., 73, pp. 197-214, 1988. Zbl0666.35012MR943939
  11. [11] J. K. HALE, G. RAUGEL (2), Lower-semicontinuity of attractors of gradient systems and applications, Ann. Mat. Pura e App., to appear. Zbl0712.47053MR1043076
  12. [12] J. K. HALE, G. RAUGEL (3), Lower-semicontinuity of the singularly perturbed hyperbolic equation, DDE., to appear. Zbl0752.35034
  13. [13] J. K. HALE, G. RAUGEL (4), A reaction-diffusion equation on a thin domain, preprint. Zbl0828.35055
  14. [14] J. K. HALE, G. RAUGEL (5), Morse-Smale property for a singularly perturbed hyperbolic equation, in preparation. Zbl0666.35012
  15. [15] J. K. HALE, C. ROCHA, Interaction of diffusion and boundary conditions, Nonlinear Analysis, T.M.A., 11, pp. 633-649, 1987. Zbl0661.35047MR886654
  16. [16] A. HARAUX, Two remarks on dissipative hyperbolic problems, Séminaire du Collège de France, J. L. Lions Ed., Pittman, Boston, 1985. Zbl0579.35057
  17. [17] D. HENRY (1), Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math, Vol. 840, Springer Verlag, 1981. Zbl0456.35001MR610244
  18. [18] D. HENRY (2), Some infinite-dimensional Morse-Smale Systems defined by parabolic partial differential equations, J. Diff. Equat. 59, pp. 165-205, 1985. Zbl0572.58012MR804887
  19. [19] D. HENRY (3), Generic properties of equilibrium solutions by perturbation of the boundary, Preprint of the « Centre de Recerca Matematica Institut d'Estudis Catalans», 37, 1986. Zbl0656.35069MR921906
  20. [20] X. MORÀ, J. SOLA-MORALES, The singular limit dynamics of semilinear damped wave equations, J. Diff. Equat., to appear. Zbl0699.35177MR992148
  21. [21] J. PALIS, W. DE MELO, Geometric Theory of Dynamical Systems, Springer Verlag, 1982. Zbl0491.58001MR669541
  22. [22] C. ROCHA, Generic properties of equilibria of reaction-diffusion equations with variable diffusion, Proc. Roy. Soc. Edinburgh, 101A, pp. 45-56, 1985. Zbl0601.35053MR824206
  23. [23] J. SMOLLER, A. WASSERMANGeneric bifurcation of steady-state solutions, J.Diff. Equat. 52, pp. 432-438, 1984. Zbl0488.58015MR744306

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.