The convergence of a Galerkin approximation scheme for an extensible beam

Tunc Geveci; Ian Christie

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 4, page 597-613
  • ISSN: 0764-583X

How to cite

top

Geveci, Tunc, and Christie, Ian. "The convergence of a Galerkin approximation scheme for an extensible beam." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.4 (1989): 597-613. <http://eudml.org/doc/193581>.

@article{Geveci1989,
author = {Geveci, Tunc, Christie, Ian},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {stability; transverse displacement; hinged ends; semi-discrete Galerkin approximate scheme; rate of convergence; error estimates; Crank-Nicolson time discretization},
language = {eng},
number = {4},
pages = {597-613},
publisher = {Dunod},
title = {The convergence of a Galerkin approximation scheme for an extensible beam},
url = {http://eudml.org/doc/193581},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Geveci, Tunc
AU - Christie, Ian
TI - The convergence of a Galerkin approximation scheme for an extensible beam
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 4
SP - 597
EP - 613
LA - eng
KW - stability; transverse displacement; hinged ends; semi-discrete Galerkin approximate scheme; rate of convergence; error estimates; Crank-Nicolson time discretization
UR - http://eudml.org/doc/193581
ER -

References

top
  1. [1] G. A. BAKER & J. H. BRAMBLE, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numer. 13 (1979), 75-100. Zbl0405.65057MR533876
  2. [2] J. M. BALL, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61-90. Zbl0254.73042MR319440
  3. [3] I. CHRISTIE & J. M. SANZ-SERNA, A Galerkin method for a nonlinear integro-differential wave system, Comp. Meth. Appl. Mech. Eng. 44 (1984), 229-237. Zbl0525.73089MR757058
  4. [4] R. COURANT & D. HILBERT, Methods of Mathematical Physics, Vol. 1, Wiley-Interscience, New York, 1953. Zbl0051.28802MR65391
  5. [5] R. W. DICKEY, Free vibrations and dynamic buckling of an extensible beam, Math. Anal. Appl. 29 (1970), 443-454. Zbl0187.04803MR253617
  6. [6] T. GEVECI, On the convergence of Galerkin approximation schemes for second-order hyperbolic equations in energy and negative norms, Math. Compt. 42 (1984), 393-415. Zbl0553.65082MR736443
  7. [7] P. HOLMES & J. MARSDEN, Bifurcation to divergence and flutter in flow-induced oscillations : An infinite dimensional analysis, Automatica 14 (1978), 367-384. Zbl0385.93028MR495662
  8. [8] J. RAUCH, On convergence of the finite element method for the wave equation, SIAM J. Numer. Anal. 22 (1985), 245-249. Zbl0575.65091MR781318
  9. [9] J. M. SANZ-SERNA, Methods for the numerical solution of the nonlinear Schroedinger equation, Math. Compt. 43 (1984), 21-27. Zbl0555.65061MR744922
  10. [10] G. STRANG & G. J. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J., 1973. Zbl0356.65096MR443377
  11. [11] V. THOMÉE, Negative norm estimates and superconvergence in Galerkin methods for parabolic problems, Math. Compt. 34 (1980), 99-113. Zbl0454.65077MR551292
  12. [12] V. THOMÉE, Galerkin Finite Element Methods for Parabolic Problems, Springer lecture Notes in Mathematics v. 1054, Springer-Verlag, Berlin, 1984. Zbl0528.65052MR744045
  13. [13] S. WOINOWSKY-KRIEGER, The effect of the axial force on the vibration of hinged bars, J. Appl. Mech, 17 (1950), 35-36. Zbl0036.13302MR34202

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.