A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation

F. Schieweck; L. Tobiska

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1989)

  • Volume: 23, Issue: 4, page 627-647
  • ISSN: 0764-583X

How to cite

top

Schieweck, F., and Tobiska, L.. "A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 23.4 (1989): 627-647. <http://eudml.org/doc/193583>.

@article{Schieweck1989,
author = {Schieweck, F., Tobiska, L.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nonconforming finite element method; upstream discretization; stationary Navier-Stokes equations; error estimates},
language = {eng},
number = {4},
pages = {627-647},
publisher = {Dunod},
title = {A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation},
url = {http://eudml.org/doc/193583},
volume = {23},
year = {1989},
}

TY - JOUR
AU - Schieweck, F.
AU - Tobiska, L.
TI - A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1989
PB - Dunod
VL - 23
IS - 4
SP - 627
EP - 647
LA - eng
KW - nonconforming finite element method; upstream discretization; stationary Navier-Stokes equations; error estimates
UR - http://eudml.org/doc/193583
ER -

References

top
  1. [1] P. G. CIARLET, The finite element method for elliptic problems, North-Holland-Publ. Comp., Amsterdam/New York, 1978. Zbl0383.65058MR520174
  2. [2] M. CROUZEIX, P. A. RAVIART, Conforming and Nonconforming Finite Element Methods for Solving the Stationary Stokes Equations RAIRO Numer. Anal. 3 (1973), 33-76. Zbl0302.65087MR343661
  3. [3] M. FORTIN, Résolution numérique des équations de Navier-Stokes par des méthodes d'éléments finis de type mixte, Proc. 2 Int. Symp. Finite Elements in Flow Problems, S. Margherita Ligure, Italy (1978). 
  4. [4] V. GIRAULT, P.-A. RAVIART, Finite Element Approximation of the Navier-Stokes Equations, Lect. Notes in Math., vol. 749, Springer Verlag, Berlin, Heidelberg, New York 1981. Zbl0441.65081MR548867
  5. [5] V. GIRAULT, P. A. RAVIART, An analysis of upwind schemes for the Navier-Stokes equations, SIAM J. Numer. Anal. 19 (1982) 2, 312-333. Zbl0487.76036MR650053
  6. [6] J. HEYWOOD, R. RANNACHER, Finite element approximation of the nonstationary Navier-Stokes problem I. Regularity of solutions and second order estimates for spatial discretization, SIAM J. Numer. Anal. 19 (1982) 2, 275-311. Zbl0487.76035MR650052
  7. [7] P. JAMET, P. A. RAVIART, Numerical solution of the stationary Navier-Stokes equations by finite element methods, Computing Methods in Applied Sciences and Engineering, Part 1, Lecture Notes in Computer Sciences 10 (1974), Springer Verlag. Zbl0285.76007MR448951
  8. [8] P. LESAINT, P. A. RAVIART, On a finite element method for solving the Neutron transport equation, in : Mathematical Aspects of Finite Elements in Partial Differential Equations (ed. by C. de Boor), Academic press, 1974. Zbl0341.65076
  9. [9] K. OHMORI, T. USHIJIMA, A Technique of Upstream Type Applied to a Linear Nonconforming Finite Element Approximation of Convective Diffusion Equations, RAIRO Numer. Anal. 18 (1984), 309-332. Zbl0586.65080MR751761
  10. [10] F. SCHIEWECK, L. TOBISKA, Eine upwind FEM zur Loesung des stationaeren Navier-Stokes-Problems. WZ TU Magdeburg 31 (1987) 5, 73-76. Zbl0638.76032MR951104
  11. [11] R. TEMAM, Navier-Stokes Equations. Theory and Numerical Analysis, North. Holland Publ. 1979. Zbl0426.35003MR603444

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.