A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations
Katsushi Ohmori; Teruo Ushijima
- Volume: 18, Issue: 3, page 309-332
- ISSN: 0764-583X
Access Full Article
topHow to cite
topOhmori, Katsushi, and Ushijima, Teruo. "A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 18.3 (1984): 309-332. <http://eudml.org/doc/193436>.
@article{Ohmori1984,
author = {Ohmori, Katsushi, Ushijima, Teruo},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {convective diffusion equations; linear nonconforming finite elements; discrete maximum principle; upstream-like scheme; error estimate; numerical examples},
language = {eng},
number = {3},
pages = {309-332},
publisher = {Dunod},
title = {A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations},
url = {http://eudml.org/doc/193436},
volume = {18},
year = {1984},
}
TY - JOUR
AU - Ohmori, Katsushi
AU - Ushijima, Teruo
TI - A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1984
PB - Dunod
VL - 18
IS - 3
SP - 309
EP - 332
LA - eng
KW - convective diffusion equations; linear nonconforming finite elements; discrete maximum principle; upstream-like scheme; error estimate; numerical examples
UR - http://eudml.org/doc/193436
ER -
References
top- 1. K. BABA and M. TABATA, On a conservative upwind finite element scheme for convective diffusion equations, R.A.I.R.O., Anal. Numér., Vol. 15, 1981, pp. 3-25. Zbl0466.76090MR610595
- 2. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O., Anal. Numér., Vol. 8, 1974, pp. 129-151. Zbl0338.90047MR365287
- 3. P. G. CIARLET, Discrete maximum principle for finite-difference operators, Aeq. Math., Vol. 4, 1970, pp. 338-352. Zbl0198.14601MR292317
- 4. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978. Zbl0383.65058MR520174
- 5. P. G. CIARLET and P.-A. RAVIART, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., Vol. 2, 1973, pp. 17-31. Zbl0251.65069MR375802
- 6. R. COURANT and D. HILBERT, Methods of Mathematical Physics, Vol. II, Interscience Publishers, New York, 1962. Zbl0099.29504MR65391
- 7. M. CROUZEIX and P.-A. RAVIART, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, R.A.I.R.O., Anal. Numér., Vol. 7, 1973, pp. 33-76. Zbl0302.65087MR343661
- 8. A. DERVIEUX and F. THOMASSET, Sur l'approximation d'écoulements multifluides incompressibles visqueux par des éléments finis triangulaires de degré un, Rapports de Recherche 67 (LABOLIA INRIA), Avril, 1981.
- 9. H. FUJII, Some remarks on finite element analysis of time-dependent field problem, Theory and Practice in Finite Element Structural Analysis, Y. Yamada and R. H. Gallagher, Eds., University of Tokyo Press, 1973, pp. 91-106. Zbl0373.65047
- 10. T. IKEDA, Artificial viscosity in finite element approximations to the diffusion equations with drift terms, H. Fujita and M. Yamaguti, Eds., Lecture Notes in Num. Appl. Anal., Kinokuniya, Tokyo, Vol. 2, 1980, pp. 59-78. Zbl0468.76087MR684080
- 11. H. KANAYAMA, Discrete models for salinity distribution in a bay - Conservative law and maximum principle, Proc. Japan Nat. Congr. for Applied Mech., 1980, Theoretical and Applied Mechanics, Vol. 28, 1980, pp. 559-579.
- 12. F. KIKUCHI, Discrete maximum principle and artificial viscosity in finite element approximation to convective diffusion equations, ISAS Report., No. 550, 1977.
- 13. F. KIKUCHI and T. USHIJIMA, Theoretical analysis of some finite element schemes for convective diffusion equations, R. H. Gallagher, D. H. Norrie, J. T. Oden and O. C. Zienkiewicz, Eds., Finite Elements in Fluids, John Wiley & Sons Ltd, Vol. 4, 1982, pp. 67-87. MR647391
- 14. K. OHMORI, The discrete maximum principle for nonconforming finite element approximations to stationary convective diffusion equations, Math. Rep. Toyama Univ., Vol. 2, 1979, pp. 33-52. Corrections, ibid.,Vol. 4, 1981, pp. 179-182. Zbl0459.65073MR542377
- 15. P.-A. RAVIART and J. M. THOMAS, Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comp., Vol. 31, 1977, pp. 391-413. Zbl0364.65082MR431752
- 16. R. TEMAM, Navier-Stokes Equations, North Holland, Amsterdam, 1977. Zbl0383.35057
- 17. F. THOMASSET, Implementation of Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York, 1982. Zbl0475.76036MR720192
- 18. T. USHIJIMA, On a certain finite element method of the upstream type applied to convective diffusion problems, China-France Symposium on the Finite Element Method, 1982. Zbl0663.76113MR754025
Citations in EuDML Documents
top- Uwe Risch, An upwind finite element method for singularly perturbed elliptic problems and local estimates in the -norm
- F. Schieweck, L. Tobiska, A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation
- Paola Causin, Riccardo Sacco, Carlo L. Bottasso, Flux-upwind stabilization of the discontinuous Petrov–Galerkin formulation with Lagrange multipliers for advection-diffusion problems
- Mária Lukáčová-Medviďová, Combined finite element -- finite volume method (convergence analysis)
- Paola Causin, Riccardo Sacco, Carlo L. Bottasso, Flux-upwind stabilization of the discontinuous Petrov–Galerkin formulation with Lagrange multipliers for advection-diffusion problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.