A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations

Katsushi Ohmori; Teruo Ushijima

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1984)

  • Volume: 18, Issue: 3, page 309-332
  • ISSN: 0764-583X

How to cite

top

Ohmori, Katsushi, and Ushijima, Teruo. "A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 18.3 (1984): 309-332. <http://eudml.org/doc/193436>.

@article{Ohmori1984,
author = {Ohmori, Katsushi, Ushijima, Teruo},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {convective diffusion equations; linear nonconforming finite elements; discrete maximum principle; upstream-like scheme; error estimate; numerical examples},
language = {eng},
number = {3},
pages = {309-332},
publisher = {Dunod},
title = {A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations},
url = {http://eudml.org/doc/193436},
volume = {18},
year = {1984},
}

TY - JOUR
AU - Ohmori, Katsushi
AU - Ushijima, Teruo
TI - A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1984
PB - Dunod
VL - 18
IS - 3
SP - 309
EP - 332
LA - eng
KW - convective diffusion equations; linear nonconforming finite elements; discrete maximum principle; upstream-like scheme; error estimate; numerical examples
UR - http://eudml.org/doc/193436
ER -

References

top
  1. 1. K. BABA and M. TABATA, On a conservative upwind finite element scheme for convective diffusion equations, R.A.I.R.O., Anal. Numér., Vol. 15, 1981, pp. 3-25. Zbl0466.76090MR610595
  2. 2. F. BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, R.A.I.R.O., Anal. Numér., Vol. 8, 1974, pp. 129-151. Zbl0338.90047MR365287
  3. 3. P. G. CIARLET, Discrete maximum principle for finite-difference operators, Aeq. Math., Vol. 4, 1970, pp. 338-352. Zbl0198.14601MR292317
  4. 4. P. G. CIARLET, The Finite Element Method for Elliptic Problems, North Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  5. 5. P. G. CIARLET and P.-A. RAVIART, Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., Vol. 2, 1973, pp. 17-31. Zbl0251.65069MR375802
  6. 6. R. COURANT and D. HILBERT, Methods of Mathematical Physics, Vol. II, Interscience Publishers, New York, 1962. Zbl0099.29504MR65391
  7. 7. M. CROUZEIX and P.-A. RAVIART, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, R.A.I.R.O., Anal. Numér., Vol. 7, 1973, pp. 33-76. Zbl0302.65087MR343661
  8. 8. A. DERVIEUX and F. THOMASSET, Sur l'approximation d'écoulements multifluides incompressibles visqueux par des éléments finis triangulaires de degré un, Rapports de Recherche 67 (LABOLIA INRIA), Avril, 1981. 
  9. 9. H. FUJII, Some remarks on finite element analysis of time-dependent field problem, Theory and Practice in Finite Element Structural Analysis, Y. Yamada and R. H. Gallagher, Eds., University of Tokyo Press, 1973, pp. 91-106. Zbl0373.65047
  10. 10. T. IKEDA, Artificial viscosity in finite element approximations to the diffusion equations with drift terms, H. Fujita and M. Yamaguti, Eds., Lecture Notes in Num. Appl. Anal., Kinokuniya, Tokyo, Vol. 2, 1980, pp. 59-78. Zbl0468.76087MR684080
  11. 11. H. KANAYAMA, Discrete models for salinity distribution in a bay - Conservative law and maximum principle, Proc. Japan Nat. Congr. for Applied Mech., 1980, Theoretical and Applied Mechanics, Vol. 28, 1980, pp. 559-579. 
  12. 12. F. KIKUCHI, Discrete maximum principle and artificial viscosity in finite element approximation to convective diffusion equations, ISAS Report., No. 550, 1977. 
  13. 13. F. KIKUCHI and T. USHIJIMA, Theoretical analysis of some finite element schemes for convective diffusion equations, R. H. Gallagher, D. H. Norrie, J. T. Oden and O. C. Zienkiewicz, Eds., Finite Elements in Fluids, John Wiley & Sons Ltd, Vol. 4, 1982, pp. 67-87. MR647391
  14. 14. K. OHMORI, The discrete maximum principle for nonconforming finite element approximations to stationary convective diffusion equations, Math. Rep. Toyama Univ., Vol. 2, 1979, pp. 33-52. Corrections, ibid.,Vol. 4, 1981, pp. 179-182. Zbl0459.65073MR542377
  15. 15. P.-A. RAVIART and J. M. THOMAS, Primal hybrid finite element methods for 2nd order elliptic equations, Math. Comp., Vol. 31, 1977, pp. 391-413. Zbl0364.65082MR431752
  16. 16. R. TEMAM, Navier-Stokes Equations, North Holland, Amsterdam, 1977. Zbl0383.35057
  17. 17. F. THOMASSET, Implementation of Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York, 1982. Zbl0475.76036MR720192
  18. 18. T. USHIJIMA, On a certain finite element method of the upstream type applied to convective diffusion problems, China-France Symposium on the Finite Element Method, 1982. Zbl0663.76113MR754025

Citations in EuDML Documents

top
  1. Uwe Risch, An upwind finite element method for singularly perturbed elliptic problems and local estimates in the L -norm
  2. F. Schieweck, L. Tobiska, A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation
  3. Paola Causin, Riccardo Sacco, Carlo L. Bottasso, Flux-upwind stabilization of the discontinuous Petrov–Galerkin formulation with Lagrange multipliers for advection-diffusion problems
  4. Mária Lukáčová-Medviďová, Combined finite element -- finite volume method (convergence analysis)
  5. Paola Causin, Riccardo Sacco, Carlo L. Bottasso, Flux-upwind stabilization of the discontinuous Petrov–Galerkin formulation with Lagrange multipliers for advection-diffusion problems

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.