Streamline diffusion methods for the Vlasov-Poisson equation

Mohammad Asadzadeh

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1990)

  • Volume: 24, Issue: 2, page 177-196
  • ISSN: 0764-583X

How to cite

top

Asadzadeh, Mohammad. "Streamline diffusion methods for the Vlasov-Poisson equation." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.2 (1990): 177-196. <http://eudml.org/doc/193593>.

@article{Asadzadeh1990,
author = {Asadzadeh, Mohammad},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {error estimates; streamline diffusion; discontinuous Galerkin finite element methods; discretization of the Vlasov-Poisson equation},
language = {eng},
number = {2},
pages = {177-196},
publisher = {Dunod},
title = {Streamline diffusion methods for the Vlasov-Poisson equation},
url = {http://eudml.org/doc/193593},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Asadzadeh, Mohammad
TI - Streamline diffusion methods for the Vlasov-Poisson equation
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 2
SP - 177
EP - 196
LA - eng
KW - error estimates; streamline diffusion; discontinuous Galerkin finite element methods; discretization of the Vlasov-Poisson equation
UR - http://eudml.org/doc/193593
ER -

References

top
  1. [1] A. A. ARSENEV, Global existence of a weak solution of Vlasov's System of equations, U.S.S.R. Comput. Math, and Math. Phys., 15 (1975), pp. 131-143. Zbl0302.35009MR371322
  2. [2] A. A. ARSENEV, Local uniqueness and existence of a classical solution of Vlasov's system of equations, Soviet Math. Dokl., 15 (1974), pp. 1223-1225. Zbl0311.76036
  3. [3] C. BARDOS and P. DEGOND, Global existence for the Vlasov Poisson equation in 3 space variables with small initial data. École Polytechnique, Centre de Mathématiques Appliquées, Rapport interne N° 101. Zbl0593.35076MR794002
  4. [4] J. T. BEAL and A. MAJDA, Vortex methods I and II, Math. Comp., 32 (1982), pp. 1-27 and pp. 29-52. 
  5. [5] P. G. CIARLET, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  6. [6] G. H. COTTETand P. A. RAVIART, Particle methods for the one-dimensional Vlasov-Poisson equation, SIAM J. Numer., Anal., 21 (1984), pp. 52-76. Zbl0549.65084MR731212
  7. [7] G. H. COTTET and P. A. RAVIART, On particle-in-cell methods for the Vlasov-Poisson equations, TTSP, 15 (1986) pp. 1-31. MR831210
  8. [8] J. DENAVIT, Pitfalls in particle simulations and in numerical solutions of the Vlasov equation, in Proceedings of the Oberwalfach Conference on Mathematical Methods of Plasma physics, ed. by R, Kress and J. Wick, 1980, Band 20, pp. 247-269. Zbl0515.76125
  9. [9] J. DUGUNDJI, Topology. Allyn and Bacon, Boston, 1966. Zbl0144.21501MR193606
  10. [10] P. HANSBO, Finite Element Procedures for Conduction and Convection Problems, Licenciat thesis, Chalmers Univ. of Technology, Department of Structural Mechanics, 1986. 
  11. [11] R. W. HOCKNEY and J. W. EASTWOOD, Computer Simulations, using Particles, McGraw-Hill, New York, 1981. Zbl0662.76002
  12. [12] T. J. HUGHES and A. BROOKS, A multidimensional upwind scheme with no crosswind diffusion, in AMD, vol. 34, Finite Element Methods for Convection Dominated Flows, T. J. Hughes (ed.), ASME, New York, 1979. Zbl0423.76067MR571679
  13. [13] S. V. IORDANSKII, The Cauchy problem for the kinetic equation of plasma, Trudy Mat. Inst. Steklow, 60 (1961), 181-194, English transl. Amer. Math. Soc.Trans. ser. 2, 35 (1964), pp. 351-363. Zbl0127.21902MR132278
  14. [14] C. JOHNSON, Finite element methods for convection-diffusion problems, in Computing Methods in Applied Science and Engineering, R. Glowinski, J. L.Lions (eds.) North-Holland, INRIA, 1982. Zbl0505.76099MR784648
  15. [15] C. JOHNSON and U. NÀVERT, An analysis of some finite element methods for advection-diffusion, in Analytical and Numerical Approaches to Asymptotic Problems in Analysis, O. Axelsson, L. Frank and A. Van der Sluis (eds.), North-Holland, Amsterdam, 1981. Zbl0455.76081MR605502
  16. [16] C. JOHNSON, U. NÂVERT and J. PITKÂRANTA, Finite element methods for linear hyperbolic problems, Comput. Methods in Appl. Mech. and Engineering, 45 (1985), pp. 285-312. Zbl0526.76087MR759811
  17. [17] C. JOHNSON and J. SARANEN, Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp., 47 (1986), pp. 1-18. Zbl0609.76020MR842120
  18. [18] C. JOHNSON and A. SZEPESSY, On the convergence of a finite element method for a nonlinear hyperbolic conservation law, Math. Comp. vol. 49, 1987, pp. 427-444. Zbl0634.65075MR906180
  19. [19] J. L. LIONS, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris 1969. Zbl0189.40603MR259693
  20. [20] H. NEUNZERT and J. WICK, The convergence of simulation methods in plasma physics, in Proceedings of the Oberwalfach conference on Mathematical Methods of Plasma Physics, R. Kress and J. Wich (Verlag Peter Lang 1980), Band 20, pp. 272-286. Zbl0563.76125MR713653
  21. [21] U. NÀVERT, A finite element method for convection-diffusion problems, Thesis,Chalmers Univ. of Technology, Göteborg, 1982. 
  22. [22] S. UKAI and T. OKABE, On classical solution in the large in time of two-dimensional Vlasov's équation, Osaka J. of Math., 15 (1978), pp. 245-261. Zbl0405.35002MR504289
  23. [23] A. A. VLASOV, Many Particle Theory and its Application to Plasma, State Publishing House for Technical-Theoretical Literature, Moscow and Leningrad, 1950, Gordon and Breach, Science publishers, Library of Congress, 1961. MR186291
  24. [24] S. WOLLMAN, The use of a heat operator in an existence theory problem of the Vlasov equation, TTSP, 14 (1985), pp. 567-593. Zbl0595.76126MR813498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.