Defect correction methods for convection dominated convection-diffusion problems
- Volume: 24, Issue: 4, page 423-455
- ISSN: 0764-583X
Access Full Article
topHow to cite
topAxelsson, O., and Layton, W.. "Defect correction methods for convection dominated convection-diffusion problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.4 (1990): 423-455. <http://eudml.org/doc/193602>.
@article{Axelsson1990,
author = {Axelsson, O., Layton, W.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {singularly perturbed convection diffusion equations; sharp boundary layers; finite element methods; defect correction; artificial viscosity; local and global error estimates; convergence},
language = {eng},
number = {4},
pages = {423-455},
publisher = {Dunod},
title = {Defect correction methods for convection dominated convection-diffusion problems},
url = {http://eudml.org/doc/193602},
volume = {24},
year = {1990},
}
TY - JOUR
AU - Axelsson, O.
AU - Layton, W.
TI - Defect correction methods for convection dominated convection-diffusion problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 4
SP - 423
EP - 455
LA - eng
KW - singularly perturbed convection diffusion equations; sharp boundary layers; finite element methods; defect correction; artificial viscosity; local and global error estimates; convergence
UR - http://eudml.org/doc/193602
ER -
References
top- [1] O. AXELSSON, On the numencal solution of convection dominated, convection-diffusion problems, in : Math. Meth. Energy Res. (K. I. Gross, ed. ), SIAM,Philadelphia, 1984. Zbl0551.76077MR790509
- [2] O. AXELSSON, Stability and error estimates of Galerkin finite element approximations for convection-diffusion equations, I. M. A. J. Numer. Anal., 1 (1981), 329-345. Zbl0508.76069MR641313
- [3] W. ECKHAUS, Boundary layers in linear elliptic singular perturbation problems, SIAM Review, 14 (1972), 225-270. Zbl0234.35009MR600325
- [4] V. ERVIN and W. LAYTON, High resolution minimal storage algorithms for convection dommated, convection diffusion equations, pp 1173-1201 in Tiams : of the Fourth Arms Conf. on Appl. Math. and Comp., 1987. Zbl0625.76095MR905115
- [5] V. ERVIN and W. LAYTON, An analysis of a defect correction method for a model convection diffusion equations, SIAM J. N. A. 26 (1989) 169-179. Zbl0672.65063MR977954
- [6] P. W. HEMKER, Mixed defect correction iteration for the accurate solution of the convection diffusion equation, pp 485-501 in : Multigrid Methods, L. N. M. vol. 960, (W. Hackbusch and U. Trottenberg, eds.) Springer Verlag, Berlin 1982. Zbl0505.65047MR685785
- [7] P. W. HEMKER, The use of defect correction for the solution of a singularly perturbed o.d.e., preprint. CWI, Amsterdam, 1983. Zbl0504.65050
- [8] C. JOHNSON and U. NÄVERT, An analysis of some finite element methods for advection diffusion problems, in : Anal. and Numer. Approaches to Asym. Probs. in Analysis (O. Axelson, L. S. Frank and A. van der Sluis, eds.) North Holland, 1981, 99-116. Zbl0455.76081MR605502
- [9] C. JOHNSON and U. NÄVERT and J. PITKARANTA, Finite element methods for linear hyperbolic problems, Comp. Meth. Appl. Mech. Eng., 45 (1984), 285-312. Zbl0526.76087MR759811
- [10] C. JOHNSON and A. H. SCHATZ and L. B. WAHLBIN, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp., 49 (1987), 25-38. Zbl0629.65111MR890252
- [11] C. MIRANDA, Partial differential equations of elliptic type, Springer Verlag, Berlin, 1980. Zbl0198.14101MR284700
- [12] U. NÄVERT, A finite element method for convection diffusion problems, Ph. D. Thesis, Chalmers Inst. of Tech., 1982.
- [13] A. H. SCHATZ and L. WAHLBTN, On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions, Math. Comp. 40 (1983), pp 47-89. Zbl0518.65080MR679434
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.