Defect correction methods for convection dominated convection-diffusion problems

O. Axelsson; W. Layton

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1990)

  • Volume: 24, Issue: 4, page 423-455
  • ISSN: 0764-583X

How to cite

top

Axelsson, O., and Layton, W.. "Defect correction methods for convection dominated convection-diffusion problems." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.4 (1990): 423-455. <http://eudml.org/doc/193602>.

@article{Axelsson1990,
author = {Axelsson, O., Layton, W.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {singularly perturbed convection diffusion equations; sharp boundary layers; finite element methods; defect correction; artificial viscosity; local and global error estimates; convergence},
language = {eng},
number = {4},
pages = {423-455},
publisher = {Dunod},
title = {Defect correction methods for convection dominated convection-diffusion problems},
url = {http://eudml.org/doc/193602},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Axelsson, O.
AU - Layton, W.
TI - Defect correction methods for convection dominated convection-diffusion problems
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 4
SP - 423
EP - 455
LA - eng
KW - singularly perturbed convection diffusion equations; sharp boundary layers; finite element methods; defect correction; artificial viscosity; local and global error estimates; convergence
UR - http://eudml.org/doc/193602
ER -

References

top
  1. [1] O. AXELSSON, On the numencal solution of convection dominated, convection-diffusion problems, in : Math. Meth. Energy Res. (K. I. Gross, ed. ), SIAM,Philadelphia, 1984. Zbl0551.76077MR790509
  2. [2] O. AXELSSON, Stability and error estimates of Galerkin finite element approximations for convection-diffusion equations, I. M. A. J. Numer. Anal., 1 (1981), 329-345. Zbl0508.76069MR641313
  3. [3] W. ECKHAUS, Boundary layers in linear elliptic singular perturbation problems, SIAM Review, 14 (1972), 225-270. Zbl0234.35009MR600325
  4. [4] V. ERVIN and W. LAYTON, High resolution minimal storage algorithms for convection dommated, convection diffusion equations, pp 1173-1201 in Tiams : of the Fourth Arms Conf. on Appl. Math. and Comp., 1987. Zbl0625.76095MR905115
  5. [5] V. ERVIN and W. LAYTON, An analysis of a defect correction method for a model convection diffusion equations, SIAM J. N. A. 26 (1989) 169-179. Zbl0672.65063MR977954
  6. [6] P. W. HEMKER, Mixed defect correction iteration for the accurate solution of the convection diffusion equation, pp 485-501 in : Multigrid Methods, L. N. M. vol. 960, (W. Hackbusch and U. Trottenberg, eds.) Springer Verlag, Berlin 1982. Zbl0505.65047MR685785
  7. [7] P. W. HEMKER, The use of defect correction for the solution of a singularly perturbed o.d.e., preprint. CWI, Amsterdam, 1983. Zbl0504.65050
  8. [8] C. JOHNSON and U. NÄVERT, An analysis of some finite element methods for advection diffusion problems, in : Anal. and Numer. Approaches to Asym. Probs. in Analysis (O. Axelson, L. S. Frank and A. van der Sluis, eds.) North Holland, 1981, 99-116. Zbl0455.76081MR605502
  9. [9] C. JOHNSON and U. NÄVERT and J. PITKARANTA, Finite element methods for linear hyperbolic problems, Comp. Meth. Appl. Mech. Eng., 45 (1984), 285-312. Zbl0526.76087MR759811
  10. [10] C. JOHNSON and A. H. SCHATZ and L. B. WAHLBIN, Crosswind smear and pointwise errors in streamline diffusion finite element methods, Math. Comp., 49 (1987), 25-38. Zbl0629.65111MR890252
  11. [11] C. MIRANDA, Partial differential equations of elliptic type, Springer Verlag, Berlin, 1980. Zbl0198.14101MR284700
  12. [12] U. NÄVERT, A finite element method for convection diffusion problems, Ph. D. Thesis, Chalmers Inst. of Tech., 1982. 
  13. [13] A. H. SCHATZ and L. WAHLBTN, On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions, Math. Comp. 40 (1983), pp 47-89. Zbl0518.65080MR679434

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.