Vibrations of a folded plate

Hervé Le Dret

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1990)

  • Volume: 24, Issue: 4, page 501-521
  • ISSN: 0764-583X

How to cite

top

Le Dret, Hervé. "Vibrations of a folded plate." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.4 (1990): 501-521. <http://eudml.org/doc/193604>.

@article{LeDret1990,
author = {Le Dret, Hervé},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {two-dimensional eigenvalue problems; limit behaviour of the three- dimensional eigenvalue; linearized elasticity},
language = {eng},
number = {4},
pages = {501-521},
publisher = {Dunod},
title = {Vibrations of a folded plate},
url = {http://eudml.org/doc/193604},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Le Dret, Hervé
TI - Vibrations of a folded plate
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 4
SP - 501
EP - 521
LA - eng
KW - two-dimensional eigenvalue problems; limit behaviour of the three- dimensional eigenvalue; linearized elasticity
UR - http://eudml.org/doc/193604
ER -

References

top
  1. [1] R. A. ADAMS, Sobolev Spaces. Academie Press, New York (1975). Zbl0314.46030MR450957
  2. [2] M. AUFRANC, Numerical study of a junction between a three-dimensional elastic structure and a plate, Comp. Methods Appl. Mech. Engrg. 74, 207-222 (1989). Zbl0687.73067MR1020623
  3. [3] F. BOURQUIN & P. G. CIARLET, Modeling and justification of eigenvalue problems for junctions between elastic structures. To appear in J. Funct. Anal. (1988). Zbl0699.73010MR1026860
  4. [4] P. G. CIARLET & S. KESAVAN, Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory. Comp. Methods Appl. Mech.Engrg. 26, 149-172 (1980). Zbl0489.73057MR626720
  5. [5] P. G. CIARLET & H. LE DRET, Justification of the boundary conditions of a clamped plate by an asymptotic analysis. To appear in Asympt. Anal. (1988). Zbl0699.73011MR978264
  6. [6] P. G. CIARLET, H. LE DRET & R. NZENGWA, Modélisation de la jonction entre un corps élastique tridimensionnel et une plaque.C.R. Acad. Sci. Paris, Série I, 305, 55-58 (1987). Zbl0632.73015MR902275
  7. [7] P. G. CIARLET, H. LE DRET & R. NZENGWA, Junctions between three-dimensional and two-dimensional linearly elastic structures.J. Math. Pures Appl. 68, 261-295 (1989). Zbl0661.73013MR1025905
  8. [8] R. COURANT & D. HILBERT, Methods of Mathematical Physics, Vol. I. Interscience, New York (1953). Zbl0051.28802MR65391
  9. [9] P. DESTUYNDER, Sur une Justification des modèles de plaques et de coques par les méthodes asymptotiques. Doctoral Dissertation, Université Pierre & Marie Curie, Paris (1980). 
  10. [10] H. LE DRET, Modélisation d'une plaque pliée. C.R. Acad. Sci. Paris, Série l, 304, 571-573 (1987). Zbl0634.73047MR894999
  11. [11] H. LE DRET, Modeling of a folded plate. To appear in Comput. Mech. (1987). Zbl0741.73026MR894999
  12. [12] H. LE DRET, Folded plates revisited. Comput. Mech. 5, 345-365 (1989). Zbl0741.73025
  13. [13] H. LE DRET, Modeling of the junction between two rods. J. Math. Pures Appl. 68, 365-397 (1989). Zbl0743.73020MR1025910
  14. [14] J.-L. LIONS & E. MAGENES, Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968). Zbl0165.10801MR247243
  15. [15] J.-L. LIONS & E. MAGENES, Problèmes aux limites non homogènes et applications, Vol. 2. Dunod, Paris (1968). Zbl0165.10801MR247244
  16. [16] P.-A. RAVIART & J.-M. THOMAS, Introduction à l'analyse numérique des équations aux dérivées partielles. Masson, Paris (1983). Zbl0561.65069MR773854

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.