Modeling the vibrations of a multi-rod structure

N. Kerdid

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1997)

  • Volume: 31, Issue: 7, page 891-925
  • ISSN: 0764-583X

How to cite

top

Kerdid, N.. "Modeling the vibrations of a multi-rod structure." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 31.7 (1997): 891-925. <http://eudml.org/doc/193860>.

@article{Kerdid1997,
author = {Kerdid, N.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {convergence; eigenvalues; eigenfunctions; three-dimensional linearized elasticity},
language = {eng},
number = {7},
pages = {891-925},
publisher = {Dunod},
title = {Modeling the vibrations of a multi-rod structure},
url = {http://eudml.org/doc/193860},
volume = {31},
year = {1997},
}

TY - JOUR
AU - Kerdid, N.
TI - Modeling the vibrations of a multi-rod structure
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1997
PB - Dunod
VL - 31
IS - 7
SP - 891
EP - 925
LA - eng
KW - convergence; eigenvalues; eigenfunctions; three-dimensional linearized elasticity
UR - http://eudml.org/doc/193860
ER -

References

top
  1. [1] I. AGANOVIČ and Z. TUTEK, 1986, A justification of the one-dimensional linear model of elastic beam, Math. Meth. Appl. Sri., 8, p. 1-14. Zbl0603.73056MR870989
  2. [2] A. BERMUDEZ and J. M. VIAÑO, 1984, Une justification des équations de la thermoélasticité des poutres à section variable par des méthodes asymptotiques, RAIRO, Analyse Numérique, 18,347-376. Zbl0572.73053MR761673
  3. [3] M. BERNADOU, S. FAYOLLE and F. LÉNÉ, 1989, Numerical analysis of junctions between plates, Comput. Methods Appl. Pech. Engrg., 74, 307-326. Zbl0687.73068MR1020628
  4. [4] F. BOURQUIN and P. G. CIARELT, 1989, Modeling and justification of eigenvalue problems for junctions between elastic structures, J. Funct. Anal., 87,392-427. Zbl0699.73010MR1026860
  5. [5] P. G. CIARLET, 1990, Plates and Junctions in Elastic Multi-Structures. An Asymptotic Analysis RMA 14, Masson, Paris. Zbl0706.73046MR1071376
  6. [6] P. G. CIARLET and P. DESTUYNDER, 1979, A justification of two-dimensional linear plate model, J. Mécanique, 18,315-344. Zbl0415.73072MR533827
  7. [7] P. G. CIARLET and S. KESAVAN, 1981, Two-dimensional approximation of three-dimensional eigenvalue problems in plate theory, Comp, Meth. Appl. Mech. Eng., 26, 145-172. Zbl0489.73057MR626720
  8. [8] P. G. CIARLET, H. L E DRET and R. NZENGWA, 1989, Junctions between three-dimensional and two-dimensional linearly elastic structures, J. Math. Pures Appl., 68, 261-295. Zbl0661.73013MR1025905
  9. [9] A. CIMETIÈRE, G. GEYMONAT H. LE DRET, A. RAOULT and Z. TUTEK, 1988, Asymptotic theory and analysis for displacement and stress distributions in nonlinear elastic straight slender rods, J. Elasticity, 19, 111-161. Zbl0653.73010MR937626
  10. [10] S. FAYOLLE, 1987, Sur l'analyse numérique de raccords de poutres et de plaques, Thèse de 3e cycle, Université Pierre et Marie Curie, 1987. 
  11. [11] G. GEYMONAT, F. KRASUCKI and J. J. MARIGO, 1987, Stress distribution in anisotropic elastic composite beams, in: P.G. Ciarlet and E. Sanchez-Palencia, eds. Applications of Multiple Scalings in Mechanics, RMA 4, Masson, Paris, pp. 118-133. Zbl0645.73029MR901992
  12. [12] I. GRUAIS, 1993, Modélisation de la jonction entre une poutre et une plaque en élasticité linéarisée, RAIRO Analyse Numérique, 27, 77-105. Zbl0767.73034MR1204630
  13. [13] I. GRUAIS, 1993, Modeling of the junction between a plate and a rod in nonlinear elasticity, Asymptotic Anal., 7, 179-194. Zbl0788.73040MR1226973
  14. [14] N. KERDID, 1993, Comportement asymptotique quand l'épaisseur tend vers zéro du problème de valeurs propres pour une poutre mince encastrée, en élasticité linéaire, C. R. Acad. Sci. Paris, t. 316, Série I, 755-758. Zbl0773.73047MR1214429
  15. [15] N. KERDID, 1995, Modélisation des vibrations d'une multi-structure forme de deux poutres, C. R. Acad. Sci. Paris, t. 321, Série I, 1641-1646. Zbl0842.73038MR1367822
  16. [16] N. KERDID, 1995, Étude de problèmes de jonctions de poutres en élasticité linéaire, Thèse de Doctorat, Université Pierre et Marie Curie. 
  17. [17] H. LE DRET, 1990, Modeling of folded plate, Comput. Mech,, 5, 401-416. Zbl0741.73026
  18. [18] H. LE DRET, 1989, Folded plates revisited, Comput. Mech, 5, 345-365. Zbl0741.73025
  19. [19] H. LE DRET, 1989, Modelling of the junction between two rods, J. Math. Pures Appl., 68,365-397. Zbl0743.73020MR1025910
  20. [20] H. LE DRET, 1990, Vibration of a folded plate, Modélisation Mathématique et Analyse Numérique, 24, 501-521. Zbl0712.73044MR1070967
  21. [21] H. LE DRET, 1994, Elastodynamics for multiplate structures, in: H. Brezis and J. L. Lions eds, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. XI, pp. 151-180. Zbl0801.73045MR1268905
  22. [22] H. LE DRET, 1991, Problèmes variationnels dans les multi-domaines. Modélisation des jonctions et applications, RMA 19, Masson, Paris. Zbl0744.73027MR1130395
  23. [23] V. LODS, Modeling and junction of an eigenvalue problem for a plate inserted in a three-dimensional support, Modélisation Mathématique et Analyse Numérique, to appear. Zbl0866.73031
  24. [24] A. RAOULT, 1992, Asymptotic modeling of the elastodynamics of a multistructure, Asymptotic Anal., 6, 73-108. Zbl0777.73033MR1188078
  25. [25] P. A. RAVIART and J. M. THOMAS, 1983, Introduction à l'analyse numérique des équations aux dérivées partielles, Masson, Paris. Zbl0561.65069MR773854
  26. [26] J. SANCHEZ-HUBERT and E. SANCHEZ-PALENCIA, 1991, Couplage flexion-torsion-traction dans les poutres anisotropes à section hétérogène, C. R. Acad. Sci. Paris, t. 312, Série, 337-344. Zbl0736.73032MR1108524
  27. [27] L. TRABUCHO and J. M. VIAÑO, 1987, Derivation of generalized models for linear elastic beams by asymptotic expansion methods, in: P. G. Ciarlet and E. Sanchez-Palencia, eds. Applications of multiple Scalings in Mechanics, RMA 4, Masson, Paris, pp. 302-315. Zbl0646.73024MR902000
  28. [28] L. TRABUCHO and J. M. VIANO, 1988, A derivation of generalized Saint Venant's torsion theory from three dimensional elasticity by asymptotic expansion methods, Applicable Analysis, 31, 129-148. Zbl0637.73003MR1017507
  29. [29] L. TRABUCHO and J. M. VIANO, 1990, A new approach of Timoshenko's beam theory by the asymptotic expansion method, Mathematical Modelling and Numerical Analysis, 24, 651-680. Zbl0777.73028MR1076964
  30. [30] L. TRABUCHO and J. M. VIANO, 1989, Existence and characterisation of higher order terms in an asymptotic expansion method for linearized elastic beams, Asymptotic Anal., 2, 223-255. Zbl0850.73126MR1020349
  31. [31] L. TRABUCHO and J. M. VIAÑO, 1995, Mathematical Modeling of Rods, in: P. G. Ciarlet and J. L. Lions, eds, Handbook of Numerical Analysis, Vol. IV, North-Holland, Amsterdam, pp. 487-969. Zbl0873.73041MR1422507

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.