Une méthode multigrille pour la solution des problèmes d'obstacle
- Volume: 24, Issue: 6, page 711-735
- ISSN: 0764-583X
Access Full Article
topHow to cite
topHoppe, Ronald H. W.. "Une méthode multigrille pour la solution des problèmes d'obstacle." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.6 (1990): 711-735. <http://eudml.org/doc/193613>.
@article{Hoppe1990,
author = {Hoppe, Ronald H. W.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {obstacle problems; variational inequalities; multigrid algorithm; Local convergence; subdifferentials},
language = {fre},
number = {6},
pages = {711-735},
publisher = {Dunod},
title = {Une méthode multigrille pour la solution des problèmes d'obstacle},
url = {http://eudml.org/doc/193613},
volume = {24},
year = {1990},
}
TY - JOUR
AU - Hoppe, Ronald H. W.
TI - Une méthode multigrille pour la solution des problèmes d'obstacle
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 6
SP - 711
EP - 735
LA - fre
KW - obstacle problems; variational inequalities; multigrid algorithm; Local convergence; subdifferentials
UR - http://eudml.org/doc/193613
ER -
References
top- [1] R. BOYER, B. MARTINET, Multigrid methods in convex optimization, dans : Multigrid Methods : special topics and Applications, 2nd European Conference on Multigrid Methods, Cologne, October 1-4, 1985 (eds.: U. Trottenberg, W, Hackbusch), p. 27-37, GMD-Studien Nr. 110, St. Augustin, 1986. Zbl0593.65041MR1043879
- [2] A. BRANDT, C. W. CRYER, Multi-grid algorithms for the solution of linear complementarity problems arising from free boundary problems, SIAM J. Sci. Stat. Comput. 4, 655-684 (1983). Zbl0542.65060MR725660
- [3] F. BREZZI, L. A. CAFFARELLI, Convergence of the discrete free boundaries fo finite element approximations, RAIRO Analyse numérique/Numerical analysis 17, 385-395 (1983). Zbl0547.65081MR713766
- [4] F. H. CLARKE, Optimization and nonsmooth analysis, Wiley, New York, 1983. Zbl0582.49001MR709590
- [5] W. HACKBUSCHConvergence of multi-grid iterations applied to difference equations, Math. Comp. 34, 425-440 (1980). Zbl0422.65020MR559194
- [6] W. HACKBUSCH, On the convergence of multi-grid iterations, Beitr. Numer. Math. 9, 213-239 (1981). Zbl0465.65054
- [7] W. HACKBUSCH, Multi-grid methods and applications, Springer, Berlin-Heidelberg-New York, 1985. Zbl0595.65106
- [8] W. HACKBUSCH, H. D. MITTELMANN, On multi-grid methods for variational inequalities, Numer. Math. 42, 65-75 (1983). Zbl0497.65042MR1553995
- [9] R. H. W. HOPPE, Multi-grid methods for Hamilton-Jacobi-Bellman equations, Numer. Math. 49, 239-254 (1986). Zbl0577.65088MR848524
- [10] R. H. W. HOPPE, Two-sided approximations for unilateral variational inequalities by multi-grid methods, Optimization 18, 867-881 (1987). Zbl0635.49006MR916215
- [11] R. H. W. HOPPE, Multi-grid algorithms for variational inequalities, SIAM J.Numer. Anal 24, 1046-1065 (1987). Zbl0628.65046MR909064
- [12] R. H. W. HOPPE, Multi-grid solutions to the elastic plastic torsion problem in multiply connected domains, Int. J. Numer. Methods Eng. 26, 631-646 (1988). Zbl0703.73091MR932352
- [13] R. H. W. HOPPE, H. D. MITTELMANN, A multi-grid continuation strategy for parameter dependent variational inequalities, J. Comput. Appl. Math. 26, 35-46 (1989). Zbl0671.65047MR1007351
- [14] D. KINDERLEHRER, G. STAMPACCHIA, An introduction to variational inequalities and their applications, Academic Press, New York, 1980. Zbl0457.35001MR567696
- [15] H. LANCHON, Sur la solution du problème de torsion élastoplastique d'une barre cylindrique de section multiconnexe, C. R. Acad. Sci. Paris, Ser. I 271, 1137-1140 (1970). Zbl0217.55104MR273886
- [16] P. L. LIONS, B. MERCIER, Approximation numérique des équations de Hamilton-Jacobi-Bellman, RAIRO Analyse numérique/Numerical analysis 14, 369-393 (1980). Zbl0469.65041MR596541
- [17] J. MANDEL, Étude algébrique d'une méthode multigrille pour quelques problèmes de frontière libre, C. R. Acad. Sci. Paris, Ser. I 298, 469-472 (1984). Zbl0543.65044MR750748
- [18] J. MANDEL, A multilevel iterative method for symmetric, positive definite linear complementarity problems, Appl. Math. Optimization 11, 77-95 (1984). Zbl0539.65046MR726977
- [19] J. J. MORÉ, W. C. RHEINBOLDT, On P- and S-functions and related classes of n-dimensional nonlinear mappings, Linear Algebra Appl. 6, 45-68 (1973). Zbl0247.65038MR311855
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.