Une méthode multigrille pour la solution des problèmes d'obstacle

Ronald H. W. Hoppe

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1990)

  • Volume: 24, Issue: 6, page 711-735
  • ISSN: 0764-583X

How to cite

top

Hoppe, Ronald H. W.. "Une méthode multigrille pour la solution des problèmes d'obstacle." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.6 (1990): 711-735. <http://eudml.org/doc/193613>.

@article{Hoppe1990,
author = {Hoppe, Ronald H. W.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {obstacle problems; variational inequalities; multigrid algorithm; Local convergence; subdifferentials},
language = {fre},
number = {6},
pages = {711-735},
publisher = {Dunod},
title = {Une méthode multigrille pour la solution des problèmes d'obstacle},
url = {http://eudml.org/doc/193613},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Hoppe, Ronald H. W.
TI - Une méthode multigrille pour la solution des problèmes d'obstacle
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 6
SP - 711
EP - 735
LA - fre
KW - obstacle problems; variational inequalities; multigrid algorithm; Local convergence; subdifferentials
UR - http://eudml.org/doc/193613
ER -

References

top
  1. [1] R. BOYER, B. MARTINET, Multigrid methods in convex optimization, dans : Multigrid Methods : special topics and Applications, 2nd European Conference on Multigrid Methods, Cologne, October 1-4, 1985 (eds.: U. Trottenberg, W, Hackbusch), p. 27-37, GMD-Studien Nr. 110, St. Augustin, 1986. Zbl0593.65041MR1043879
  2. [2] A. BRANDT, C. W. CRYER, Multi-grid algorithms for the solution of linear complementarity problems arising from free boundary problems, SIAM J. Sci. Stat. Comput. 4, 655-684 (1983). Zbl0542.65060MR725660
  3. [3] F. BREZZI, L. A. CAFFARELLI, Convergence of the discrete free boundaries fo finite element approximations, RAIRO Analyse numérique/Numerical analysis 17, 385-395 (1983). Zbl0547.65081MR713766
  4. [4] F. H. CLARKE, Optimization and nonsmooth analysis, Wiley, New York, 1983. Zbl0582.49001MR709590
  5. [5] W. HACKBUSCHConvergence of multi-grid iterations applied to difference equations, Math. Comp. 34, 425-440 (1980). Zbl0422.65020MR559194
  6. [6] W. HACKBUSCH, On the convergence of multi-grid iterations, Beitr. Numer. Math. 9, 213-239 (1981). Zbl0465.65054
  7. [7] W. HACKBUSCH, Multi-grid methods and applications, Springer, Berlin-Heidelberg-New York, 1985. Zbl0595.65106
  8. [8] W. HACKBUSCH, H. D. MITTELMANN, On multi-grid methods for variational inequalities, Numer. Math. 42, 65-75 (1983). Zbl0497.65042MR1553995
  9. [9] R. H. W. HOPPE, Multi-grid methods for Hamilton-Jacobi-Bellman equations, Numer. Math. 49, 239-254 (1986). Zbl0577.65088MR848524
  10. [10] R. H. W. HOPPE, Two-sided approximations for unilateral variational inequalities by multi-grid methods, Optimization 18, 867-881 (1987). Zbl0635.49006MR916215
  11. [11] R. H. W. HOPPE, Multi-grid algorithms for variational inequalities, SIAM J.Numer. Anal 24, 1046-1065 (1987). Zbl0628.65046MR909064
  12. [12] R. H. W. HOPPE, Multi-grid solutions to the elastic plastic torsion problem in multiply connected domains, Int. J. Numer. Methods Eng. 26, 631-646 (1988). Zbl0703.73091MR932352
  13. [13] R. H. W. HOPPE, H. D. MITTELMANN, A multi-grid continuation strategy for parameter dependent variational inequalities, J. Comput. Appl. Math. 26, 35-46 (1989). Zbl0671.65047MR1007351
  14. [14] D. KINDERLEHRER, G. STAMPACCHIA, An introduction to variational inequalities and their applications, Academic Press, New York, 1980. Zbl0457.35001MR567696
  15. [15] H. LANCHON, Sur la solution du problème de torsion élastoplastique d'une barre cylindrique de section multiconnexe, C. R. Acad. Sci. Paris, Ser. I 271, 1137-1140 (1970). Zbl0217.55104MR273886
  16. [16] P. L. LIONS, B. MERCIER, Approximation numérique des équations de Hamilton-Jacobi-Bellman, RAIRO Analyse numérique/Numerical analysis 14, 369-393 (1980). Zbl0469.65041MR596541
  17. [17] J. MANDEL, Étude algébrique d'une méthode multigrille pour quelques problèmes de frontière libre, C. R. Acad. Sci. Paris, Ser. I 298, 469-472 (1984). Zbl0543.65044MR750748
  18. [18] J. MANDEL, A multilevel iterative method for symmetric, positive definite linear complementarity problems, Appl. Math. Optimization 11, 77-95 (1984). Zbl0539.65046MR726977
  19. [19] J. J. MORÉ, W. C. RHEINBOLDT, On P- and S-functions and related classes of n-dimensional nonlinear mappings, Linear Algebra Appl. 6, 45-68 (1973). Zbl0247.65038MR311855

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.