Convergence of the discrete free boundaries for finite element approximations

F. Brezzi; L. A. Caffarelli

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1983)

  • Volume: 17, Issue: 4, page 385-395
  • ISSN: 0764-583X

How to cite

top

Brezzi, F., and Caffarelli, L. A.. "Convergence of the discrete free boundaries for finite element approximations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 17.4 (1983): 385-395. <http://eudml.org/doc/193422>.

@article{Brezzi1983,
author = {Brezzi, F., Caffarelli, L. A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {4},
pages = {385-395},
publisher = {Dunod},
title = {Convergence of the discrete free boundaries for finite element approximations},
url = {http://eudml.org/doc/193422},
volume = {17},
year = {1983},
}

TY - JOUR
AU - Brezzi, F.
AU - Caffarelli, L. A.
TI - Convergence of the discrete free boundaries for finite element approximations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1983
PB - Dunod
VL - 17
IS - 4
SP - 385
EP - 395
LA - eng
UR - http://eudml.org/doc/193422
ER -

References

top
  1. [1] C BAIOCCHI, « Estimations d’erreur dans L pour les inéquations à obstacle » in « Mathematica! Aspects of Finite Element Methods », Lecture Notes in Math 606, Springer, 1977 Zbl0374.65053MR488847
  2. [2] L A CAFFARELI, A remark on the Hausdorff measure of afree boundary, and the convergence of coincidence sets , Bollettino U M I (5) 18 A (1981) 109-113 Zbl0453.35085MR607212
  3. [3] P G CIARLET, Fonctions de Green discretes et principe du maximum discret, Thesis Univ Paris (1971) 
  4. [3] P G CIARLET, The finite Element Methods for Elhptic Problems, North-Holland (1978) Zbl0999.65129MR1115235
  5. [5] P G CIARLET, P-A RAVIART, Maximum principle and uniform convergence for the finite element method, Comput Math Appl Mech Engrg 2 (1973) 17-31 Zbl0251.65069MR375802
  6. [6] J NITSCHE, « L -convergence of finite element approximations, in «Mathematical Aspects of Finite Element Methods», Lecture Notes in Math 606, Springer, 1977 Zbl0362.65088MR488848
  7. [7] R RANNACHER, Zur L -Konvergenz linearer jiniter elemente beim Dinchlet problem, Math Z 149 (1977) 69-77 Zbl0321.65055MR488859
  8. [8] R SCOTT, Optimal L -estimates for the finite element method on irregular meshes, Math Comput 30 (1976) 681-697 Zbl0349.65060MR436617

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.