On numerical solution of a mildly nonlinear turning point problem

Relja Vulanović

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1990)

  • Volume: 24, Issue: 6, page 765-783
  • ISSN: 0764-583X

How to cite

top

Vulanović, Relja. "On numerical solution of a mildly nonlinear turning point problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.6 (1990): 765-783. <http://eudml.org/doc/193615>.

@article{Vulanović1990,
author = {Vulanović, Relja},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {grid generation; mildly nonlinear singularly perturbed boundary value problem; turning point; finite difference scheme; stability; convergence; numerical results},
language = {eng},
number = {6},
pages = {765-783},
publisher = {Dunod},
title = {On numerical solution of a mildly nonlinear turning point problem},
url = {http://eudml.org/doc/193615},
volume = {24},
year = {1990},
}

TY - JOUR
AU - Vulanović, Relja
TI - On numerical solution of a mildly nonlinear turning point problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 6
SP - 765
EP - 783
LA - eng
KW - grid generation; mildly nonlinear singularly perturbed boundary value problem; turning point; finite difference scheme; stability; convergence; numerical results
UR - http://eudml.org/doc/193615
ER -

References

top
  1. [1] L. ABRAHAMSSON and S. OSHER, Monotone difference schemes for singular perturbation problems, SIAM J. Numer. Anal., 19 (1982), pp. 979-992. Zbl0507.65039MR672572
  2. [2] A. E. BERGER, H. HAN and R. B. KELLOGG, On the behaviour of the exact solution and the error in a numerical solution of a turning point problem, Proc. BAIL II Conf., J. J. H. Miller, ed., Boole Press, Dublin, 1982, pp. 13-27. Zbl0511.65063MR737567
  3. [3] A. E. BERGER, A note concerning the El-Mistikawy Werle exponential finite difference scheme for a boundary turning point problem, Proc. BAIL III Conf., J. J. H. Miller, éd., Boole Press, Dublin, 1984, pp. 145-150. Zbl0673.65046MR774611
  4. [4] E. BOHL, Finite Modelle gewöhnlicher Randwertaufgaben, B. G. Teubner, Stuttgart, 1981. Zbl0472.65070MR633643
  5. [5] D. L. BROWN and J. LORENZ, A high order method for stiff boundary-value problems with turning points, SIAM J. Sci. Statist. Comp., 8 (1987), pp. 790-805. Zbl0635.65089MR902743
  6. [6] P. A. FARRELL and E. C. GARTLAND, A uniform convergence result for a turning point problem, Proc. BAIL V Conf., Guo Ben-yu et al., ed., Boole Press, Dublin, 1988, pp. 127-132. Zbl0685.65073
  7. [7] R. B. KELLOGG and A. TSAN, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp., 32 (1978), pp. 1025-1039. Zbl0418.65040MR483484
  8. [8] H.-O. KREISS, N. NICHOLS and D. L. BROWN, Numerical methods for stiff two-point boundary value problems, SIAM J. Numer. Anal., 23 (1986), pp. 325-368. Zbl0608.65049MR831622
  9. [9] V. D. LISEIKIN and N. N. YANENKO, On the numerical solution of equations with interior and exterior boundary layers on a non-uniform mesh, Proc. BAIL III Conf., J.J.H. Miller, ed., Boole Press, Dublin, 1984, pp. 68-80. Zbl0672.65070MR774607
  10. [10] V. D. LISEIKIN and V. E. PETRENKO, On numerical solution of nonlinear singularly perturbed problems (Russian), Preprint 687, SO AN SSSR, Computer Center, Novosibirsk, 1987. Zbl0658.65074MR933089
  11. [11] J. LORENZ, Stabïlity and monotonicity properties of stiff quasilinear boundary problems, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 12 (1982), pp. 151-175. Zbl0546.34046MR735755
  12. [12] W. L. MIRANKER, Numerical Methods for Stiff Equations and Singular Perturbation Problems, D. Reidel, Dordrecht, Boston and London, 1981. Zbl0454.65051MR603627
  13. [13] J. M. ORTEGA and W. C. RHEINBOLDT, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York and London, 1970. Zbl0241.65046MR273810
  14. [14] S. OSHER, Nonlinear singular perturbation problems and one sided difference schemes, SIAM J. Numer. Anal., 18 (1981), pp. 129-144. Zbl0471.65069MR603435
  15. [15] R. VULANOVIĆ, On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 13 (1983), pp. 187-201. Zbl0573.65064MR786443
  16. [16] R. VULANOVIĆ, A second order uniform numerical method for a turning point problem, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 18, 1 (1988), pp. 17-30. Zbl0693.65051MR1034700
  17. [17] R. VULANOVIĆ, A uniform numerical method for quasilinear singular perturbation problems without turning points, Computing, 41 (1989), pp. 97-106. Zbl0664.65082MR981673
  18. [18] R. VULANOVIĆ, On numerical solution of a turning point problem, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 19, 1 (1989), pp. 11-24. Zbl0718.65055MR1100256
  19. [19] R. VULANOVIĆ, Quasilinear singular perturbation problems and the uniform L1 convergence, Z. angew. Math. Mech., 69 (1989), pp. T130-T132. Zbl0684.34058MR1002357
  20. [20] R. VULANOVIĆ, On numerical solution of some quasilinear turning point problems, Proc. BAIL V Conf., Guo Ben-yu et al, ed., Boole Press, Dublin, 1988, pp. 368-373. Zbl0695.65056MR990288
  21. [21] A. I. ZADORIN and V. N. IGNAT'EV, Numerical solution of an equation with a small parameter multiplying the highest derivative (Russian), Zh. Vychisl. Mat. i Mat. Fiz., 23 (1983), pp. 620-628. Zbl0527.65061MR706887

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.