On numerical solution of a mildly nonlinear turning point problem
- Volume: 24, Issue: 6, page 765-783
- ISSN: 0764-583X
Access Full Article
topHow to cite
topVulanović, Relja. "On numerical solution of a mildly nonlinear turning point problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 24.6 (1990): 765-783. <http://eudml.org/doc/193615>.
@article{Vulanović1990,
author = {Vulanović, Relja},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {grid generation; mildly nonlinear singularly perturbed boundary value problem; turning point; finite difference scheme; stability; convergence; numerical results},
language = {eng},
number = {6},
pages = {765-783},
publisher = {Dunod},
title = {On numerical solution of a mildly nonlinear turning point problem},
url = {http://eudml.org/doc/193615},
volume = {24},
year = {1990},
}
TY - JOUR
AU - Vulanović, Relja
TI - On numerical solution of a mildly nonlinear turning point problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1990
PB - Dunod
VL - 24
IS - 6
SP - 765
EP - 783
LA - eng
KW - grid generation; mildly nonlinear singularly perturbed boundary value problem; turning point; finite difference scheme; stability; convergence; numerical results
UR - http://eudml.org/doc/193615
ER -
References
top- [1] L. ABRAHAMSSON and S. OSHER, Monotone difference schemes for singular perturbation problems, SIAM J. Numer. Anal., 19 (1982), pp. 979-992. Zbl0507.65039MR672572
- [2] A. E. BERGER, H. HAN and R. B. KELLOGG, On the behaviour of the exact solution and the error in a numerical solution of a turning point problem, Proc. BAIL II Conf., J. J. H. Miller, ed., Boole Press, Dublin, 1982, pp. 13-27. Zbl0511.65063MR737567
- [3] A. E. BERGER, A note concerning the El-Mistikawy Werle exponential finite difference scheme for a boundary turning point problem, Proc. BAIL III Conf., J. J. H. Miller, éd., Boole Press, Dublin, 1984, pp. 145-150. Zbl0673.65046MR774611
- [4] E. BOHL, Finite Modelle gewöhnlicher Randwertaufgaben, B. G. Teubner, Stuttgart, 1981. Zbl0472.65070MR633643
- [5] D. L. BROWN and J. LORENZ, A high order method for stiff boundary-value problems with turning points, SIAM J. Sci. Statist. Comp., 8 (1987), pp. 790-805. Zbl0635.65089MR902743
- [6] P. A. FARRELL and E. C. GARTLAND, A uniform convergence result for a turning point problem, Proc. BAIL V Conf., Guo Ben-yu et al., ed., Boole Press, Dublin, 1988, pp. 127-132. Zbl0685.65073
- [7] R. B. KELLOGG and A. TSAN, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp., 32 (1978), pp. 1025-1039. Zbl0418.65040MR483484
- [8] H.-O. KREISS, N. NICHOLS and D. L. BROWN, Numerical methods for stiff two-point boundary value problems, SIAM J. Numer. Anal., 23 (1986), pp. 325-368. Zbl0608.65049MR831622
- [9] V. D. LISEIKIN and N. N. YANENKO, On the numerical solution of equations with interior and exterior boundary layers on a non-uniform mesh, Proc. BAIL III Conf., J.J.H. Miller, ed., Boole Press, Dublin, 1984, pp. 68-80. Zbl0672.65070MR774607
- [10] V. D. LISEIKIN and V. E. PETRENKO, On numerical solution of nonlinear singularly perturbed problems (Russian), Preprint 687, SO AN SSSR, Computer Center, Novosibirsk, 1987. Zbl0658.65074MR933089
- [11] J. LORENZ, Stabïlity and monotonicity properties of stiff quasilinear boundary problems, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 12 (1982), pp. 151-175. Zbl0546.34046MR735755
- [12] W. L. MIRANKER, Numerical Methods for Stiff Equations and Singular Perturbation Problems, D. Reidel, Dordrecht, Boston and London, 1981. Zbl0454.65051MR603627
- [13] J. M. ORTEGA and W. C. RHEINBOLDT, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York and London, 1970. Zbl0241.65046MR273810
- [14] S. OSHER, Nonlinear singular perturbation problems and one sided difference schemes, SIAM J. Numer. Anal., 18 (1981), pp. 129-144. Zbl0471.65069MR603435
- [15] R. VULANOVIĆ, On a numerical solution of a type of singularly perturbed boundary value problem by using a special discretization mesh, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 13 (1983), pp. 187-201. Zbl0573.65064MR786443
- [16] R. VULANOVIĆ, A second order uniform numerical method for a turning point problem, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 18, 1 (1988), pp. 17-30. Zbl0693.65051MR1034700
- [17] R. VULANOVIĆ, A uniform numerical method for quasilinear singular perturbation problems without turning points, Computing, 41 (1989), pp. 97-106. Zbl0664.65082MR981673
- [18] R. VULANOVIĆ, On numerical solution of a turning point problem, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 19, 1 (1989), pp. 11-24. Zbl0718.65055MR1100256
- [19] R. VULANOVIĆ, Quasilinear singular perturbation problems and the uniform L1 convergence, Z. angew. Math. Mech., 69 (1989), pp. T130-T132. Zbl0684.34058MR1002357
- [20] R. VULANOVIĆ, On numerical solution of some quasilinear turning point problems, Proc. BAIL V Conf., Guo Ben-yu et al, ed., Boole Press, Dublin, 1988, pp. 368-373. Zbl0695.65056MR990288
- [21] A. I. ZADORIN and V. N. IGNAT'EV, Numerical solution of an equation with a small parameter multiplying the highest derivative (Russian), Zh. Vychisl. Mat. i Mat. Fiz., 23 (1983), pp. 620-628. Zbl0527.65061MR706887
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.