Approximation by finite element method of the model plasma problem

Gabriel Caloz

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 1, page 49-65
  • ISSN: 0764-583X

How to cite

top

Caloz, Gabriel. "Approximation by finite element method of the model plasma problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.1 (1991): 49-65. <http://eudml.org/doc/193621>.

@article{Caloz1991,
author = {Caloz, Gabriel},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element approximations; plasma problem},
language = {eng},
number = {1},
pages = {49-65},
publisher = {Dunod},
title = {Approximation by finite element method of the model plasma problem},
url = {http://eudml.org/doc/193621},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Caloz, Gabriel
TI - Approximation by finite element method of the model plasma problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 1
SP - 49
EP - 65
LA - eng
KW - finite element approximations; plasma problem
UR - http://eudml.org/doc/193621
ER -

References

top
  1. [1] J. W. BARRETT, C. M. ELLIOTT, Finite element approximation of the plasma problem, To appear. Zbl0681.76114
  2. [2] G. CALOZ, Simulation numérique des équilibres d'un plasma dans un tokamak : modélisation et études mathématiques, Thése n° 650, EPF, Lausanne, 1986. 
  3. [3] P. CIARLET, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
  4. [4] M. CROUZEIX, J. RAPPAZ, On numerical approximation in bifurcation theory, RMA 13, Masson, Paris, 1989. Zbl0687.65057MR1069945
  5. [5] A. FRIEDMANN, Variational principles and free boundary problems, Wiley, New York, 1982. Zbl0564.49002MR679313
  6. [6] V. GIRAULT, P. A. RAVIART, Finite element methods for Navier-Stokes equations, Springer-Verlag, Berlin, 1986. Zbl0585.65077MR851383
  7. [7] P. GRISVARD, Behavior of the solutions of an elliptic boundary value problem in a polygonal or polyhedral domain, Numerical solution of partial differential equations, B. Hubbard (ed.) (1976), pp. 207-274. Zbl0361.35022MR466912
  8. [8] F. KIKUCHI, K. NAKAZATO, T. USHIJIMA, Finite element approximation of a nonlinear eigenvalue problem related to MHD equilibria, Japan J. Appl. Math., 1 (1984), pp. 369-403. Zbl0634.76117MR840803
  9. [9] A. NIJENHUIS, Strong derivatives and inverse mappings, Amer. Math. Monthly, 81 (1974), pp. 969-980. Zbl0296.58002MR360958
  10. [10] J. RAPPAZ, Approximation of a nondifferentiable nonlinear problem related to MHD equilibria, Numer. Math., 45 (1984), pp. 117-133. Zbl0527.65073MR761884
  11. [11] R. TEMAM, A nonlinear eigenvalue problem: equilibrium shape of a confined plasma, Arch. Rat. Mech. Anal., 60 (1975), pp. 51-73. Zbl0328.35069MR412637

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.