Finite element approximation of a non-Lipschitz nonlinear eigenvalue problem

J. W. Barrett

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 5, page 627-656
  • ISSN: 0764-583X

How to cite

top

Barrett, J. W.. "Finite element approximation of a non-Lipschitz nonlinear eigenvalue problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.5 (1992): 627-656. <http://eudml.org/doc/193679>.

@article{Barrett1992,
author = {Barrett, J. W.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite elements; Galerkin method; semilinear elliptic eigenvalue problem},
language = {eng},
number = {5},
pages = {627-656},
publisher = {Dunod},
title = {Finite element approximation of a non-Lipschitz nonlinear eigenvalue problem},
url = {http://eudml.org/doc/193679},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Barrett, J. W.
TI - Finite element approximation of a non-Lipschitz nonlinear eigenvalue problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 5
SP - 627
EP - 656
LA - eng
KW - finite elements; Galerkin method; semilinear elliptic eigenvalue problem
UR - http://eudml.org/doc/193679
ER -

References

top
  1. D. G. ARONSON and L. A PELETIER, 1981, Large time behaviour of solutions of the porous medium equation in bounded domains J. Differ. Eq, 39, 378-412. Zbl0475.35059
  2. J. W. BARRETT and C. M. ELLIOTT, 1989, Finite element approximation of a plasma equilibrium problem IMA J. Numer Anal., 9, 443-464. Zbl0681.76114
  3. J. W BARRETT and C M. ELLIOTT, 1991, Finite element approximation of a free boundary problem arising in the theory of liquid drops and plasma physics R.A.I.R.O. M2.A N., 25, 213-252. Zbl0709.76086
  4. J. W. BARRETT and R. M. SHANAHAN, 1991, Finite element approximation of a model reaction-diffusion equation with a non-Lipschitz nonlinearity. Numer. Math., 59, 217-242. Zbl0735.65078
  5. G. CALOZ, 1991, Approximation by finite element method of the model plasma problem R.A.I.R.O. M2.A.N., 25, 49-66. Zbl0712.76069
  6. P. G. CIARLET and P. A. RAVIART, 1973, Maximum principle and uniform convergence for the finite element method. Comp. Meth. Appl. Mech Engrg., 2, 17-31. Zbl0251.65069
  7. F. CONRAD and P. CORTEY-DUMONT, 1987a, b, Nonlinear eigenvalue problems in elliptic variational inequalities : some results for the maximal branch. Part 1 : Approximation of solutions. Part 2 : Estimates for the free boundaries and « stability » results. Numer. Funct. Anal. Optim., 9 and 10, 1059-1090, 1091-1114. Zbl0647.49004
  8. M. CROUZEIX and J. RAPPAZ, 1990, On Numerical Approximation in Bifurcation Theory. Springer-Verlag, Berlin. Zbl0687.65057
  9. A. EYDELAND and B. TURKINGTON, 1988, A computational method of solving free-boundary problems in vortex dynamics. J. Comput. Phys., 78, 194-214. Zbl0645.76025
  10. A. FRIEDMAN, 1969, Partial Differential Equations. Holt, Reinhart & Winston. New York. Zbl0224.35002
  11. D. GILBARG and N. S. TRUDINGER, 1983, Elliptic Partial Differential Equations of Second Order. 2nd Edition. Springer, Berlin, Heidelberg. Zbl0361.35003
  12. V. GIRAULT and P. A. RAVIART, 1982, An analysis of upwind schemes for the Navier-Stokes equations. SIAM J. Numer. Anal., 19, 312-333. Zbl0487.76036
  13. R. H. NOCHETTO, 1988, Sharp L∞-error estimates for semilinear elliptic problems with free boundaries. Numer. Math., 54, 243-255. Zbl0663.65125MR971701
  14. G. STRANG and G. FIX, 1973, An Analysis of the Finite Element Method. Prentice-Hall, New Jersey. Zbl0356.65096MR443377
  15. L. B. WAHLBIN, 1990, Local behaviour in finite element methods, in : Handbook of Numerical Analysis Vol. 2 (P. G. Ciarlet and J. L. Lions, Eds. ). North Holland, Amsterdam. Zbl0875.65089MR1115238

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.