Finite element approximation of a non-Lipschitz nonlinear eigenvalue problem
- Volume: 26, Issue: 5, page 627-656
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBarrett, J. W.. "Finite element approximation of a non-Lipschitz nonlinear eigenvalue problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.5 (1992): 627-656. <http://eudml.org/doc/193679>.
@article{Barrett1992,
author = {Barrett, J. W.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite elements; Galerkin method; semilinear elliptic eigenvalue problem},
language = {eng},
number = {5},
pages = {627-656},
publisher = {Dunod},
title = {Finite element approximation of a non-Lipschitz nonlinear eigenvalue problem},
url = {http://eudml.org/doc/193679},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Barrett, J. W.
TI - Finite element approximation of a non-Lipschitz nonlinear eigenvalue problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 5
SP - 627
EP - 656
LA - eng
KW - finite elements; Galerkin method; semilinear elliptic eigenvalue problem
UR - http://eudml.org/doc/193679
ER -
References
top- D. G. ARONSON and L. A PELETIER, 1981, Large time behaviour of solutions of the porous medium equation in bounded domains J. Differ. Eq, 39, 378-412. Zbl0475.35059
- J. W. BARRETT and C. M. ELLIOTT, 1989, Finite element approximation of a plasma equilibrium problem IMA J. Numer Anal., 9, 443-464. Zbl0681.76114
- J. W BARRETT and C M. ELLIOTT, 1991, Finite element approximation of a free boundary problem arising in the theory of liquid drops and plasma physics R.A.I.R.O. M2.A N., 25, 213-252. Zbl0709.76086
- J. W. BARRETT and R. M. SHANAHAN, 1991, Finite element approximation of a model reaction-diffusion equation with a non-Lipschitz nonlinearity. Numer. Math., 59, 217-242. Zbl0735.65078
- G. CALOZ, 1991, Approximation by finite element method of the model plasma problem R.A.I.R.O. M2.A.N., 25, 49-66. Zbl0712.76069
- P. G. CIARLET and P. A. RAVIART, 1973, Maximum principle and uniform convergence for the finite element method. Comp. Meth. Appl. Mech Engrg., 2, 17-31. Zbl0251.65069
- F. CONRAD and P. CORTEY-DUMONT, 1987a, b, Nonlinear eigenvalue problems in elliptic variational inequalities : some results for the maximal branch. Part 1 : Approximation of solutions. Part 2 : Estimates for the free boundaries and « stability » results. Numer. Funct. Anal. Optim., 9 and 10, 1059-1090, 1091-1114. Zbl0647.49004
- M. CROUZEIX and J. RAPPAZ, 1990, On Numerical Approximation in Bifurcation Theory. Springer-Verlag, Berlin. Zbl0687.65057
- A. EYDELAND and B. TURKINGTON, 1988, A computational method of solving free-boundary problems in vortex dynamics. J. Comput. Phys., 78, 194-214. Zbl0645.76025
- A. FRIEDMAN, 1969, Partial Differential Equations. Holt, Reinhart & Winston. New York. Zbl0224.35002
- D. GILBARG and N. S. TRUDINGER, 1983, Elliptic Partial Differential Equations of Second Order. 2nd Edition. Springer, Berlin, Heidelberg. Zbl0361.35003
- V. GIRAULT and P. A. RAVIART, 1982, An analysis of upwind schemes for the Navier-Stokes equations. SIAM J. Numer. Anal., 19, 312-333. Zbl0487.76036
- R. H. NOCHETTO, 1988, Sharp L∞-error estimates for semilinear elliptic problems with free boundaries. Numer. Math., 54, 243-255. Zbl0663.65125MR971701
- G. STRANG and G. FIX, 1973, An Analysis of the Finite Element Method. Prentice-Hall, New Jersey. Zbl0356.65096MR443377
- L. B. WAHLBIN, 1990, Local behaviour in finite element methods, in : Handbook of Numerical Analysis Vol. 2 (P. G. Ciarlet and J. L. Lions, Eds. ). North Holland, Amsterdam. Zbl0875.65089MR1115238
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.