Upwind computation of steady planar flames with complex chemistry

M. Ghilani; B. Larrouturou

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 1, page 67-91
  • ISSN: 0764-583X

How to cite

top

Ghilani, M., and Larrouturou, B.. "Upwind computation of steady planar flames with complex chemistry." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.1 (1991): 67-91. <http://eudml.org/doc/193622>.

@article{Ghilani1991,
author = {Ghilani, M., Larrouturou, B.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {upwind scheme of finite element Petrov-Galerkin type; planary steady premixed flames; complex chemistry},
language = {eng},
number = {1},
pages = {67-91},
publisher = {Dunod},
title = {Upwind computation of steady planar flames with complex chemistry},
url = {http://eudml.org/doc/193622},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Ghilani, M.
AU - Larrouturou, B.
TI - Upwind computation of steady planar flames with complex chemistry
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 1
SP - 67
EP - 91
LA - eng
KW - upwind scheme of finite element Petrov-Galerkin type; planary steady premixed flames; complex chemistry
UR - http://eudml.org/doc/193622
ER -

References

top
  1. [1] A. K. Aziz ed, The mathematical foundations of the finite-element method withapplications to partial differential equations, Academic Press, NewYork (1972) Zbl0259.00014MR347104
  2. [2] P. G. ClARLET, The finite-element method for elliptic problems, Studies in Math and Appl, North-Holland, New York (1978) Zbl0383.65058MR520174
  3. [3] P. CLAVIN, Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Prog Energ Comb Sci, 11, pp 1-59 (1985) 
  4. [4] J. DONEA, Recent advances in computational methods for steady and transient transport problems, Nuclear Eng Design, 80, pp 141-162 (1984) 
  5. [5] M. GHILANI, Simulation numérique de flammes planes stationnaires avec chimiecomplexe, Thesis, Université Paris-Sud (1987) 
  6. [6] D. F. GRIFFITHS & J. LORENZ, An analysis of the Petrov-Galerkin finite-element method, Comp Meth Appl Mech Eng, 14, pp 39-64 (1978) Zbl0384.76065MR502036
  7. [7] T. J. R. HUGHES, A simple scheme for developing upwindfïnite éléments, Int. J. Num. Meth. Eng., 12, pp. 1359-1365 (1978). Zbl0393.65044
  8. [8] B. LARROUTUROU, The equations of one-dimensional unsteady flame propagation : existence and uniquenes, SI AM J. Math. Anal., 19 (1), pp. 32-59 (1988). Zbl0662.35090MR924543
  9. [9] B. LARROUTUROU, Introduction to combustion modelling, Springer Series in Computational Physics, to appear. 
  10. [10] N. PETERS & J. WARNATZ eds, Numerical methods in laminar flame propagation, Notes in Numerical Fluid Mechanics, 6, Vieweg, Braunschweig (1982). Zbl0536.00017MR736841
  11. [11] R. D. RJCHTMYER & K. W. MORTON, Difference methods for initial value problems, Wiley, New York (1967). Zbl0155.47502
  12. [12] M. SERMANGE, Mathematical and numerical aspects of one-dimensional laminar flame simulation, Appl. Math. Opt., 14 (2), pp. 131-154 (1986). Zbl0654.65085MR863336
  13. [13] M. D. SMOOKE, Solution of burner stabilized premixed laminar flames by boundary values methods, J. Comp. Phys., 48, pp. 72-105 (1982). Zbl0492.65065
  14. [14] M. D. SMOOKE, J. A. MILLER & R. J. KEE, Determination of adiabatic flames speeds by boundary value methods, Comb. Sci. Tech., 34, pp. 79-90 (1983). 
  15. [15] R. F. WARMING & F. HYETT, The modified equation approach to the stabilityand accuracy analysis of finite-difference methods, J. Comp. Phys., 14 (2), p.159 (1974). Zbl0291.65023MR339526
  16. [16] F. A. WILLIAMS, Combustion theory, second édition, Benjamin Cummings, Menlo Park (1985). 

NotesEmbed ?

top

You must be logged in to post comments.