Existence and convergence of the expansion in the asymptotic theory of elastic thin plates

J.-C. Paumier

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 3, page 371-391
  • ISSN: 0764-583X

How to cite

top

Paumier, J.-C.. "Existence and convergence of the expansion in the asymptotic theory of elastic thin plates." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.3 (1991): 371-391. <http://eudml.org/doc/193632>.

@article{Paumier1991,
author = {Paumier, J.-C.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {linearly elastic plate; periodicity condition; trigonometric polynomials; Sobolev space},
language = {eng},
number = {3},
pages = {371-391},
publisher = {Dunod},
title = {Existence and convergence of the expansion in the asymptotic theory of elastic thin plates},
url = {http://eudml.org/doc/193632},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Paumier, J.-C.
TI - Existence and convergence of the expansion in the asymptotic theory of elastic thin plates
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 3
SP - 371
EP - 391
LA - eng
KW - linearly elastic plate; periodicity condition; trigonometric polynomials; Sobolev space
UR - http://eudml.org/doc/193632
ER -

References

top
  1. [1] F. BREZZI (1974) : On the existence uniqueness and approximation of saddle point problems arising from Lagrangian multipliers, R.A.I.R.O., R2, 129-151. Zbl0338.90047MR365287
  2. [2] P. G. CIARLET (1980) : A justification of the von Kármán equations. Arch. Rat. Mech. Anal. 73, 349-389. Zbl0443.73034MR569597
  3. [3] P. G. CIARLET, P. DESTUYNDER (1979) : A justification of the two-dimensional linear plate model. J. Mécanique 18, 315-344. Zbl0415.73072MR533827
  4. [4] P. G. CIARLET, S. KESAVAN (1980) : Two dimensional approximations of three dimensional eigenvalues in plate theory. Comp. Methods Appl. Mech. Eng. 26, 149-172. Zbl0489.73057MR626720
  5. [5] P. G. CIARLET, J.-C. PAUMIER (1986) : A justification of the Marguerre - von Kármán equations. Comp. mech. 1, 177-202. Zbl0633.73069
  6. [6] P. DESTUYNDER (1980) Sur une justification des modèles de plaques et de coques par les méthodes asymptotiques. Thesis, Université P. et M. Curie, Paris. 
  7. [7] P. DESTUYNDER (1981) Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité. RAIRO An. Num. 15, 331-369. Zbl0479.73042MR642497
  8. [8] J.-L. LIONS (1973) Perturbation singulière dans les problèmes aux limites et en contrôle optimal. Lecture notes in maths 323, Berlin, Heidelberg, New-York : Springer. Zbl0268.49001MR600331
  9. [9] J. C. PAUMIER (1985) Analyse de certains problèmes non linéaires, modèles de plaques et de coques. Thesis, Université P. et M. Curie 
  10. [10] J. C. PAUMIER (1990) Existence Theorems for Non Linear Elastic Plates with Periodic Boundary Conditions, Journal of Elasticity, 23, 233-252. Zbl0738.73038MR1074678
  11. [11] A. RAOULT (1985) Constructiond'un modèle d'évolution de plaques, Annali di Matematica Pura et Applicata CXXXIX, 361-400. Zbl0596.73033MR798182
  12. [12] K. O. FRIEDRICHS, R. F. DRESSLER (1961) A boundary-layer theory for elastic plates, Comm. Pure Appl. Maths. 14, 1-33. Zbl0096.40001MR122117
  13. [13] A. L. GOLDENVEIZERDerivation of an approximate theory of bending of a plate by the method of asymptotic integration of the equations of the theory of elasticity, Prikl. Mat. Mech. 26, 668-686 (English translation J. Appl. Math. Mech. (1964), 1000-1025). Zbl0118.41603MR170523

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.