Page 1 Next

Displaying 1 – 20 of 141

Showing per page

2D-1D dimensional reduction in a toy model for magnetoelastic interactions

Mouhcine Tilioua (2011)

Applications of Mathematics

The paper deals with the dimensional reduction from 2D to 1D in magnetoelastic interactions. We adopt a simplified, but nontrivial model described by the Landau-Lifshitz-Gilbert equation for the magnetization field coupled to an evolution equation for the displacement. We identify the limit problem by using the so-called energy method.

A general homogenization result of spectral problem for linearized elasticity in perforated domains

Mohamed Mourad Lhannafi Ait Yahia, Hamid Haddadou (2021)

Applications of Mathematics

The goal of this paper is to establish a general homogenization result for linearized elasticity of an eigenvalue problem defined over perforated domains, beyond the periodic setting, within the framework of the H 0 -convergence theory. Our main homogenization result states that the knowledge of the fourth-order tensor A 0 , the H 0 -limit of A ε , is sufficient to determine the homogenized eigenvalue problem and preserve the structure of the spectrum. This theorem is proved essentially by using Tartar’s method...

A mimetic discretization method for linear elasticity

Lourenco Beirão Da Veiga (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A Mimetic Discretization method for the linear elasticity problem in mixed weakly symmetric form is developed. The scheme is shown to converge linearly in the mesh size, independently of the incompressibility parameter λ, provided the discrete scalar product satisfies two given conditions. Finally, a family of algebraic scalar products which respect the above conditions is detailed.

A priori error analysis of a fully-mixed finite element method for a two-dimensional fluid-solid interaction problem

Carolina Domínguez, Gabriel N. Gatica, Salim Meddahi, Ricardo Oyarzúa (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce and analyze a fully-mixed finite element method for a fluid-solid interaction problem in 2D. The model consists of an elastic body which is subject to a given incident wave that travels in the fluid surrounding it. Actually, the fluid is supposed to occupy an annular region, and hence a Robin boundary condition imitating the behavior of the scattered field at infinity is imposed on its exterior boundary, which is located far from the obstacle. The media are governed by the elastodynamic...

A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity

Tomás P. Barrios, Gabriel N. Gatica, María González, Norbert Heuer (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we develop a residual based a posteriori error analysis for an augmented mixed finite element method applied to the problem of linear elasticity in the plane. More precisely, we derive a reliable and efficient a posteriori error estimator for the case of pure Dirichlet boundary conditions. In addition, several numerical experiments confirming the theoretical properties of the estimator, and illustrating the capability of the corresponding adaptive algorithm to localize the singularities...

A residual based A POSTERIORI error estimator for an augmented mixed finite element method in linear elasticity

Tomás P. Barrios, Gabriel N. Gatica, María González, Norbert Heuer (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we develop a residual based a posteriori error analysis for an augmented mixed finite element method applied to the problem of linear elasticity in the plane. More precisely, we derive a reliable and efficient a posteriori error estimator for the case of pure Dirichlet boundary conditions. In addition, several numerical experiments confirming the theoretical properties of the estimator, and illustrating the capability of the corresponding adaptive algorithm to localize the singularities...

A subspace correction method for discontinuous Galerkin discretizations of linear elasticity equations

Blanca Ayuso de Dios, Ivan Georgiev, Johannes Kraus, Ludmil Zikatanov (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study preconditioning techniques for discontinuous Galerkin discretizations of isotropic linear elasticity problems in primal (displacement) formulation. We propose subspace correction methods based on a splitting of the vector valued piecewise linear discontinuous finite element space, that are optimal with respect to the mesh size and the Lamé parameters. The pure displacement, the mixed and the traction free problems are discussed in detail. We present a convergence analysis of the proposed...

Algebraic domain decomposition solver for linear elasticity

Aleš Janka (1999)

Applications of Mathematics

We generalize the overlapping Schwarz domain decomposition method to problems of linear elasticity. The convergence rate independent of the mesh size, coarse-space size, Korn’s constant and essential boundary conditions is proved here. Abstract convergence bounds developed here can be used for an analysis of the method applied to singular perturbations of other elliptic problems.

Analysis of a new augmented mixed finite element method for linear elasticity allowing ℝ𝕋 0 - 1 - 0 approximations

Gabriel N. Gatica (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a new stabilized mixed finite element method for the linear elasticity problem in 2 . The approach is based on the introduction of Galerkin least-squares terms arising from the constitutive and equilibrium equations, and from the relation defining the rotation in terms of the displacement. We show that the resulting augmented variational formulation and the associated Galerkin scheme are well posed, and that the latter becomes locking-free and asymptotically locking-free for Dirichlet...

Analysis of optimality conditions for some topology optimization problems in elasticity

Luis Trabucho (2002)

International Journal of Applied Mathematics and Computer Science

The subject of topology optimization has undergone an enormous practical development since the appearance of the paper by Bendso e and Kikuchi (1988), where some ideas from homogenization theory were put into practice. Since then, several engineering applications as well as different approaches have been developed successfully. However, it is difficult to find in the literature some analytical examples that might be used as a test in order to assess the validity of the solutions obtained with different...

Currently displaying 1 – 20 of 141

Page 1 Next