Smoothing and interpolation in a convex subset of a Hilbert space : II. The semi-norm case

Charles A. Micchelli; Florencio I. Utreras

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1991)

  • Volume: 25, Issue: 4, page 425-440
  • ISSN: 0764-583X

How to cite

top

Micchelli, Charles A., and Utreras, Florencio I.. "Smoothing and interpolation in a convex subset of a Hilbert space : II. The semi-norm case." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 25.4 (1991): 425-440. <http://eudml.org/doc/193634>.

@article{Micchelli1991,
author = {Micchelli, Charles A., Utreras, Florencio I.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {convex constraints; interpolation; smoothing; Hilbert space; constrained best interpolation; bounded linear operator; finite dimensional kernel; orthogonal projection; min-max problem; reduction of computational cost; decomposition; smooth monotone interpolation; least norm solution},
language = {eng},
number = {4},
pages = {425-440},
publisher = {Dunod},
title = {Smoothing and interpolation in a convex subset of a Hilbert space : II. The semi-norm case},
url = {http://eudml.org/doc/193634},
volume = {25},
year = {1991},
}

TY - JOUR
AU - Micchelli, Charles A.
AU - Utreras, Florencio I.
TI - Smoothing and interpolation in a convex subset of a Hilbert space : II. The semi-norm case
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1991
PB - Dunod
VL - 25
IS - 4
SP - 425
EP - 440
LA - eng
KW - convex constraints; interpolation; smoothing; Hilbert space; constrained best interpolation; bounded linear operator; finite dimensional kernel; orthogonal projection; min-max problem; reduction of computational cost; decomposition; smooth monotone interpolation; least norm solution
UR - http://eudml.org/doc/193634
ER -

References

top
  1. [1] L. D. IRVINE, S. P. MARIN and P. W. SMITH, Constrained interpolation and smoothing, Constr Approx, 2 (1986), 129-152. Zbl0596.41012MR891965
  2. [2] P. J. LAURENT, Approximation et Optimization, Herman, Paris, 1972. 
  3. [3] C. A. MICCHELLI, P. W. SMITH, J. SWETITS and J. D. WARD, Constrained LP approximation, Constr Approx, 1 (1985), 93-102. Zbl0582.41002MR766097
  4. [4] C. A. MICCHELLI and F. UTRERAS, Smoothing and interpolation in a convex subset of a Hilbert space, SIAM J. Sci. Statist. Comput, 9 (1988), 728-746. Zbl0651.65046MR945935
  5. [5] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, N. J., 1970. Zbl0193.18401MR274683
  6. [6] F. UTRERAS, Smoothing noisy data under monotonicity constraints existence, characterization and convergence, rates Numer. Math., 74 (1985), 611-625 Zbl0606.65006MR812623
  7. [7] F. J. BEUTLER and W. L. ROOT, The operator pseudoinverse in control and systems identification, in Generalized Inverses and Applications, eds Z. Nashed, Academie Press, New York, 1973. Zbl0367.93001MR490311
  8. [8] C. K. CHUI, F. DEUTSCH and J. D. WARD, Constrained best approximation in Hilbert space, Constr. Approx., 6 (1990), 35-64. Zbl0682.41034MR1027508
  9. [9] N. DYN and W. H. WONG, On the characterization of non-negative volume matching surface splines, J. Approx. Theory, 31 (1987), 1-10. Zbl0645.41010MR906755

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.