Smoothing and interpolation in a convex subset of a Hilbert space : II. The semi-norm case
Charles A. Micchelli; Florencio I. Utreras
- Volume: 25, Issue: 4, page 425-440
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] L. D. IRVINE, S. P. MARIN and P. W. SMITH, Constrained interpolation and smoothing, Constr Approx, 2 (1986), 129-152. Zbl0596.41012MR891965
- [2] P. J. LAURENT, Approximation et Optimization, Herman, Paris, 1972.
- [3] C. A. MICCHELLI, P. W. SMITH, J. SWETITS and J. D. WARD, Constrained LP approximation, Constr Approx, 1 (1985), 93-102. Zbl0582.41002MR766097
- [4] C. A. MICCHELLI and F. UTRERAS, Smoothing and interpolation in a convex subset of a Hilbert space, SIAM J. Sci. Statist. Comput, 9 (1988), 728-746. Zbl0651.65046MR945935
- [5] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, N. J., 1970. Zbl0193.18401MR274683
- [6] F. UTRERAS, Smoothing noisy data under monotonicity constraints existence, characterization and convergence, rates Numer. Math., 74 (1985), 611-625 Zbl0606.65006MR812623
- [7] F. J. BEUTLER and W. L. ROOT, The operator pseudoinverse in control and systems identification, in Generalized Inverses and Applications, eds Z. Nashed, Academie Press, New York, 1973. Zbl0367.93001MR490311
- [8] C. K. CHUI, F. DEUTSCH and J. D. WARD, Constrained best approximation in Hilbert space, Constr. Approx., 6 (1990), 35-64. Zbl0682.41034MR1027508
- [9] N. DYN and W. H. WONG, On the characterization of non-negative volume matching surface splines, J. Approx. Theory, 31 (1987), 1-10. Zbl0645.41010MR906755