Geometry processing : intersections, contours, and cubatures

R. E. Barnhill

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 1, page 137-147
  • ISSN: 0764-583X

How to cite

top

Barnhill, R. E.. "Geometry processing : intersections, contours, and cubatures." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.1 (1992): 137-147. <http://eudml.org/doc/193650>.

@article{Barnhill1992,
author = {Barnhill, R. E.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {research survey; geometry processing; curves; surfaces; volumes; intersections; contours; cubatures; geometric modelling; computer graphics; computer aided geometric design},
language = {eng},
number = {1},
pages = {137-147},
publisher = {Dunod},
title = {Geometry processing : intersections, contours, and cubatures},
url = {http://eudml.org/doc/193650},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Barnhill, R. E.
TI - Geometry processing : intersections, contours, and cubatures
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 1
SP - 137
EP - 147
LA - eng
KW - research survey; geometry processing; curves; surfaces; volumes; intersections; contours; cubatures; geometric modelling; computer graphics; computer aided geometric design
UR - http://eudml.org/doc/193650
ER -

References

top
  1. [1] R. E. BARNHILL and S. N. KERSEY (1990), A Marching Method for Surface/Surface Intersection, Comput. Aided Geometric Design, 7, pp. 257-280. Zbl0716.65013MR1074613
  2. [2] R. E. BARNHILL (1989), Computer Aided Geometric Design, Approximation Theory VI : Volume 1, C. K. Chui, L. L. Schumaker and J. D. Ward (eds.) pp. 33-52. Zbl0721.68094MR1090961
  3. [3] R. FAROUKI (1986), The Approximation of Non-degenerate Offset Surfaces, Comput. Aided Geom. Design, 3, pp. 15-43. Zbl0621.65003
  4. [4] B. R. PIPER (1987), Visuaily Smooth Interpolation with Triangular Bézier Patches, Geometric Modeling : Algorithms and New Trends, Gerald Farin (éd.), SIAM, pp. 221-233. MR936456
  5. [5] L. M. BRIEGER (1980), A Survey of Contouring Methods Technical Report, University of Utah, Department of Mathematics. 
  6. [6] C. S. PETERSEN (1983), Contours of Three and Four Dimensional Surfaces, University of Utah, Department of Mathematics, Masters Thesis. 
  7. [7] B. BLOOMQUIST (1990), Contouring Trivariate Surfaces, Arizona State University, Department of Computer Science and Engineering, Masters Thesis. 
  8. [8] G. FARIN (1990), Curves and Surfaces for Computer Aided Geometric Design :A Practical Guide, Gerald Farin (ed.), Second Edition, Academic Press. Zbl0702.68004MR1058011
  9. [9] R. E. BARNHILL (1964), Numerical Contour Intégration, University of Wisconsin, U. S. Army Mathematics Research Center Report No. 519, October, pp. 1-81, Ph. D. Thesis. 
  10. [10] R. E. BARNHILL and F. F. LITTLE (1984), Adaptive Triangular Cubatures, CAGD Report 80/3 and movie, Department of Mathematics, University of Utah, September 1980. Surfaces, Special issue of Rocky Mountain J. Math., R. E. Barnhill and G. M. Nielson, (eds.), January 1984, vol. 14, pp. 53-76. Zbl0555.65016MR736166
  11. [11] R. E. BARNHILL and S. H. WATSON (1989), Geometry Processing : Numerical Multiple Integration. Mathematics of Surfaces III, D. C. Handscomb, ed., Oxford University Press, pp. 49-69. Zbl0715.65014MR1042104

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.