Curvature computations on surfaces in -space
- Volume: 26, Issue: 1, page 95-112
- ISSN: 0764-583X
Access Full Article
topHow to cite
topChuang, J.-H., and Hoffmann, Ch. M.. "Curvature computations on surfaces in $n$-space." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.1 (1992): 95-112. <http://eudml.org/doc/193662>.
@article{Chuang1992,
author = {Chuang, J.-H., Hoffmann, Ch. M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {curvature; embedded surface; Dupin's indicatrix; immersion representation; computation scheme; Hessian matrix},
language = {eng},
number = {1},
pages = {95-112},
publisher = {Dunod},
title = {Curvature computations on surfaces in $n$-space},
url = {http://eudml.org/doc/193662},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Chuang, J.-H.
AU - Hoffmann, Ch. M.
TI - Curvature computations on surfaces in $n$-space
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 1
SP - 95
EP - 112
LA - eng
KW - curvature; embedded surface; Dupin's indicatrix; immersion representation; computation scheme; Hessian matrix
UR - http://eudml.org/doc/193662
ER -
References
top- [1] E. L. ALLGOWER and S. GNUTZMANN (1987), An Algorithm for Piecewise Linear Approximation of Implicity Defined 2-Dimensional Surfaces, SIAM J. Num. Anal. 24, 452-469. Zbl0618.65006MR881376
- [2] B. BUCHBERGER (1985), Gröbner Bases : An Algorithmic Method in Polynomial Ideal Theory, in Multidimensional Systems Theory, N.L. Bose, éd., D. Reidel Publishing Co., Dordrecht, Holland; 184-232. Zbl0587.13009MR835951
- [3] B. BUCHBERGER, G. COLLINS and B. KUTZLER (1988), Algebraic Methods for Geometric Reasoning, Ann. Rev. Comp. Sci, 3, 85-120. MR1001203
- [4] A. CAYLEY (1848), On the Theory of Elimination, Cambridge and Dublin Math. J. 3, 116-120.
- [5] E.-W. Chionh (1990), Base Points, Resultants, and the Implicit Representation of Rational Surfaces, PhD Diss., Comp. Sci., Univ. Waterloo, Canada.
- [6] V. CHANDRU, D. DUTTA C. HOFFMANN (1990), Variable Radius Blending with Cyclides, in Geometric Modeling for Product Engineering, K. Preiss, J. Turner, M.Wozny, eds., North Holland, 39-58.
- [7] J. CHOU, E. COHEN (1989), Constant Scallop Height Tool Path Generation, Rept. UUCS-89-011, Comp. Sci., Univ. Utah.
- [8] JUNG-HONG CHUANG (1990), Surface Approximations in Geometric Modeling, PhD Diss., Comp. Sci., Purdue University.
- [9] J.-H. CHUANG and C. M. HOFFMANN (1989), On Local Implicit Approximation and lts Applications, ACM Trans. Graphics 8, 298-324. Zbl0746.68091
- [10] S. COQUILLART (1987), Computing offsets of B-spline curves, Comput. Aided Design 19, 305-309. Zbl0655.65021
- [11] D. DUTTA and C. M. HOFFMANN (1990), A Geometric Investigation of the Skeleton of CSG Objects, Report CSD-TR-955, Comp. Sci., Purdue Univ.
- [12] R. FAROUKI (1986), The Approximation of Nondegenerate Offset Surfaces, Comp. Aided Geom. Design 3, 15-43. Zbl0621.65003
- [13] R. FAROUKI and C. NEFF (1989), Some Analytic and Algebraic Properties of Plane Offset Curves, Rept. RC 14364, IBM Yorktown Heights. MR1074602
- [14] C. M. HOFFMANN (1989), Geometric and Solid Modeling, An Introduction, Morgan Kaufmann Publ., San Mateo, Cal.
- [15] C. M. HOFFMANN (1990), A Dimensionality Paradigm for Surface Interrogation, to appear in Comput. Aided Geom. Design. Zbl0712.65010MR1079400
- [16] C. M. HOFFMANN (1990), Algebraic and Numerical Techniques for Offsets and Blends, in Computations of Curves and Surfaces, W. Dahmen, M. Gasca,C. Micchelli, eds., Kluwer Acad. Publ., 499-528. Zbl0705.68102MR1064970
- [17] C. M. HOFFMANN and M. J. O'DONNELL (1982), Programming with Equations, ACM Trans. Progr. Lang 4, 83-112. Zbl0481.68008
- [18] J. HOSCHEK (1985), Offset curves in the plane, Comput. Aided Design 17, 11-82.
- [19] J. HOSCHEK (1988), Spline approximation of offset curves, Comput. Aided Geom. Design 5, 33-40. Zbl0647.65007MR945304
- [20] J. LI, J. HOSCHEK, E. HARTMANN (1990), A geometrical method for smooth joining and interpolation of curves and surfaces, Comput. Aided Geom. Design 7. MR1074610
- [21] B. O'NEILL (1966), Elementary Differential Geometry, Academic Press. Zbl0971.53500MR203595
- [22] B. PHAM (1988), Offset approximation of uniform B-splines, Comput. Aided Design 20, 411-414. Zbl0656.65010
- [23] J. PEGNA (1988), Exact second order continuous interactive surface blending with variable sweep Geometric modeling, J. Offshore Mech. Aretic Engrg.
- [24] J. PEGNA and F.-E. WOLTER (1989), A Simple Practical Criterion to Guarantee Second-Order Smoothness of Blend Surfaces, Proc. 1989 ASME Design Autom. Conf-, Montreal, Canada.
- [25] J. ROSSIGNAC, A. REQUICHA (1986), Offsetting operationsin solid modeling, Comput. Aided Geom. Design 3, 129-148. Zbl0631.65144
- [26] S.E.O. SAEED, A. DE PENNINGTON, J. R. DODSWORTH (1988), Offsetting in geometric modeling, Comput. Aided Design 20, 67-74. Zbl0656.65015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.