Curvature computations on surfaces in n -space

J.-H. Chuang; Ch. M. Hoffmann

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 1, page 95-112
  • ISSN: 0764-583X

How to cite

top

Chuang, J.-H., and Hoffmann, Ch. M.. "Curvature computations on surfaces in $n$-space." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.1 (1992): 95-112. <http://eudml.org/doc/193662>.

@article{Chuang1992,
author = {Chuang, J.-H., Hoffmann, Ch. M.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {curvature; embedded surface; Dupin's indicatrix; immersion representation; computation scheme; Hessian matrix},
language = {eng},
number = {1},
pages = {95-112},
publisher = {Dunod},
title = {Curvature computations on surfaces in $n$-space},
url = {http://eudml.org/doc/193662},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Chuang, J.-H.
AU - Hoffmann, Ch. M.
TI - Curvature computations on surfaces in $n$-space
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 1
SP - 95
EP - 112
LA - eng
KW - curvature; embedded surface; Dupin's indicatrix; immersion representation; computation scheme; Hessian matrix
UR - http://eudml.org/doc/193662
ER -

References

top
  1. [1] E. L. ALLGOWER and S. GNUTZMANN (1987), An Algorithm for Piecewise Linear Approximation of Implicity Defined 2-Dimensional Surfaces, SIAM J. Num. Anal. 24, 452-469. Zbl0618.65006MR881376
  2. [2] B. BUCHBERGER (1985), Gröbner Bases : An Algorithmic Method in Polynomial Ideal Theory, in Multidimensional Systems Theory, N.L. Bose, éd., D. Reidel Publishing Co., Dordrecht, Holland; 184-232. Zbl0587.13009MR835951
  3. [3] B. BUCHBERGER, G. COLLINS and B. KUTZLER (1988), Algebraic Methods for Geometric Reasoning, Ann. Rev. Comp. Sci, 3, 85-120. MR1001203
  4. [4] A. CAYLEY (1848), On the Theory of Elimination, Cambridge and Dublin Math. J. 3, 116-120. 
  5. [5] E.-W. Chionh (1990), Base Points, Resultants, and the Implicit Representation of Rational Surfaces, PhD Diss., Comp. Sci., Univ. Waterloo, Canada. 
  6. [6] V. CHANDRU, D. DUTTA C. HOFFMANN (1990), Variable Radius Blending with Cyclides, in Geometric Modeling for Product Engineering, K. Preiss, J. Turner, M.Wozny, eds., North Holland, 39-58. 
  7. [7] J. CHOU, E. COHEN (1989), Constant Scallop Height Tool Path Generation, Rept. UUCS-89-011, Comp. Sci., Univ. Utah. 
  8. [8] JUNG-HONG CHUANG (1990), Surface Approximations in Geometric Modeling, PhD Diss., Comp. Sci., Purdue University. 
  9. [9] J.-H. CHUANG and C. M. HOFFMANN (1989), On Local Implicit Approximation and lts Applications, ACM Trans. Graphics 8, 298-324. Zbl0746.68091
  10. [10] S. COQUILLART (1987), Computing offsets of B-spline curves, Comput. Aided Design 19, 305-309. Zbl0655.65021
  11. [11] D. DUTTA and C. M. HOFFMANN (1990), A Geometric Investigation of the Skeleton of CSG Objects, Report CSD-TR-955, Comp. Sci., Purdue Univ. 
  12. [12] R. FAROUKI (1986), The Approximation of Nondegenerate Offset Surfaces, Comp. Aided Geom. Design 3, 15-43. Zbl0621.65003
  13. [13] R. FAROUKI and C. NEFF (1989), Some Analytic and Algebraic Properties of Plane Offset Curves, Rept. RC 14364, IBM Yorktown Heights. MR1074602
  14. [14] C. M. HOFFMANN (1989), Geometric and Solid Modeling, An Introduction, Morgan Kaufmann Publ., San Mateo, Cal. 
  15. [15] C. M. HOFFMANN (1990), A Dimensionality Paradigm for Surface Interrogation, to appear in Comput. Aided Geom. Design. Zbl0712.65010MR1079400
  16. [16] C. M. HOFFMANN (1990), Algebraic and Numerical Techniques for Offsets and Blends, in Computations of Curves and Surfaces, W. Dahmen, M. Gasca,C. Micchelli, eds., Kluwer Acad. Publ., 499-528. Zbl0705.68102MR1064970
  17. [17] C. M. HOFFMANN and M. J. O'DONNELL (1982), Programming with Equations, ACM Trans. Progr. Lang 4, 83-112. Zbl0481.68008
  18. [18] J. HOSCHEK (1985), Offset curves in the plane, Comput. Aided Design 17, 11-82. 
  19. [19] J. HOSCHEK (1988), Spline approximation of offset curves, Comput. Aided Geom. Design 5, 33-40. Zbl0647.65007MR945304
  20. [20] J. LI, J. HOSCHEK, E. HARTMANN (1990), A geometrical method for smooth joining and interpolation of curves and surfaces, Comput. Aided Geom. Design 7. MR1074610
  21. [21] B. O'NEILL (1966), Elementary Differential Geometry, Academic Press. Zbl0971.53500MR203595
  22. [22] B. PHAM (1988), Offset approximation of uniform B-splines, Comput. Aided Design 20, 411-414. Zbl0656.65010
  23. [23] J. PEGNA (1988), Exact second order continuous interactive surface blending with variable sweep Geometric modeling, J. Offshore Mech. Aretic Engrg. 
  24. [24] J. PEGNA and F.-E. WOLTER (1989), A Simple Practical Criterion to Guarantee Second-Order Smoothness of Blend Surfaces, Proc. 1989 ASME Design Autom. Conf-, Montreal, Canada. 
  25. [25] J. ROSSIGNAC, A. REQUICHA (1986), Offsetting operationsin solid modeling, Comput. Aided Geom. Design 3, 129-148. Zbl0631.65144
  26. [26] S.E.O. SAEED, A. DE PENNINGTON, J. R. DODSWORTH (1988), Offsetting in geometric modeling, Comput. Aided Design 20, 67-74. Zbl0656.65015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.