Resolution of a fixed point problem by an incremental method and application in nonlinear elasticity

R. Nzengwa

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1992)

  • Volume: 26, Issue: 7, page 893-912
  • ISSN: 0764-583X

How to cite

top

Nzengwa, R.. "Resolution of a fixed point problem by an incremental method and application in nonlinear elasticity." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.7 (1992): 893-912. <http://eudml.org/doc/193689>.

@article{Nzengwa1992,
author = {Nzengwa, R.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {pure traction boundary-value problem; live load; successive linearizations},
language = {eng},
number = {7},
pages = {893-912},
publisher = {Dunod},
title = {Resolution of a fixed point problem by an incremental method and application in nonlinear elasticity},
url = {http://eudml.org/doc/193689},
volume = {26},
year = {1992},
}

TY - JOUR
AU - Nzengwa, R.
TI - Resolution of a fixed point problem by an incremental method and application in nonlinear elasticity
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 7
SP - 893
EP - 912
LA - eng
KW - pure traction boundary-value problem; live load; successive linearizations
UR - http://eudml.org/doc/193689
ER -

References

top
  1. [1] R. ABRAHAM and J. ROBBIN, Transversal Mappings and Flows, New York (1967). Zbl0171.44404MR240836
  2. [2] R. A. ADAMS, Sobolev Spaces, Academic Press, New York (1975). Zbl0314.46030MR450957
  3. [3] S. AGMON, A. DOUGLIS and L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm., Pure Appl. Math. XII (1959), 623-727. Zbl0093.10401
  4. [4] S. AGMON, A. DOUGLIS and L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm., Pure Appl. Math. XVII (1964), 35-92. Zbl0123.28706
  5. [5] M. BERNADOU, P. G. CIARLET and J. HU, On the convergence of the semi-discrete incremental method in nonlinear, three-dimensional, elasticity, J. Elasticity 14 (1984), 425-440. Zbl0551.73019
  6. [6] D. R. J. CHILLINGWORTH, J. E. MARSDEN and Y. H. WAN, Symmetry and Bifurcation in three-dimensional elasticity, part I, Arch. Rational Mech. Anal. 80, 296-322 (1982). Zbl0509.73018
  7. [7] P. G. CIARLET, Élasticité Tridimensionnelle, Masson, Paris (1986). Zbl0572.73027
  8. [8] P. G. CIARLET, Mathematical Elasticity, Vol. I three-dimensional Elasticity, North Holland, Amsterdam, 1988. Zbl0648.73014
  9. [9] M. CROUZEIX and A. MIGNOT, Analyse Numérique des Équations Différentielles, Masson, Paris (1984). Zbl0635.65079
  10. [10] G. GEYMONAT, Sui Problemi ai limiti per i systemi lineari ellitici, Ann. Mat. Pura Appl. LXIX (1965), 207-284. Zbl0152.11102
  11. [11] M. E. GURTIN, Introduction to continuum mechanics, Academic Press, New York (1981). Zbl0559.73001
  12. [12] S. LANG, Introduction to differential manifolds, John Wiley and Sons, New York (1962). Zbl0103.15101
  13. [13] H. LE DRET, Quelques problèmes d'existence en élasticité non linéaire, These, Université Pierre-et-Marie Curie, Paris 6 (1982). 
  14. [14] H. LE DRET, Contribution à l'étude de quelques problèmes issus de l'élasticité linéaire et non linéaire, Thèse d'État, Université Pierre-et-Marie Curie, Paris 6 (1988). 
  15. [15] J. E. MARSDEN and T. J. R. HUGHES, Mathematical foundations of elasticity, Prentice-Hall, Englewood Cliffs (1983), Vol. 22, N° 2, 1988. Zbl0545.73031
  16. [16] J. MASON, Variational, Incremental and energy methods in solid mechanics and shell theory, Elsevier, Amsterdam (1980). Zbl0571.73008
  17. [17] J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Masson, Paris (1967). MR227584
  18. [18] R. NZENGWA, Méthodes incrémentales en élasticité non linéaire ; jonction entre structures élastiques tridimensionnelle et bidimensionnelle, Thèse, Université Pierre-et-Marie Curie, Paris 6 (1987). 
  19. [19] R. NZENGWA, Incremental methods in nonlinear three-dimensional incompressible elasticity, RAIRO Modél. Math. Anal. Numér., Vol. 22, N° 2, 1988, 311-342. Zbl0651.73003MR945127
  20. [20] P. PODIO-GUIDUGLI, G. VERGARA-CAFFARELLI, On a class of live traction problems in elasticiy, lecture notes in physics Trends & Applications of Pure mathematics to mechanics, proc. Palaiseau (83), 291-304. Zbl0541.73025MR755732
  21. [21] W. C. RHEINBOLDT, Methods for solving systems of nonlinear equations, CBMS series 14, SIAM, Philadelphia (1974). Zbl0325.65022MR1645489
  22. [22] W. C. RHEINBOLDT, Numerical analysis of continuation methods for nonlinear structural problems, Comput. Struct. 13 (1981), 103-113. Zbl0465.65030MR616722
  23. [23] S. J. SPECTOR, On uniqueness for the traction problem in finite elasticity, J. Elasticity 12, 367-383 (82). Zbl0506.73043MR685512
  24. [24] J. L. THOMPSON, Some existence theorems for traction boundary-value problem of linearized elastostatics, Arch. Rational Mech. Anal. 32, 369-399 (1969). Zbl0175.22108MR237130
  25. [25] C. TRUESDELL and W. NOLL, The nonlinear Field theories of mechanics, Handbuch der Physik, Vol. III/3, 1-602 (1965). Zbl1068.74002MR193816
  26. [26] T. VALENT, Sulla differenziabilità dell' operatore di Nemystky, Mend. Acc. Naz. Lincei. 65, 15-26 (1978). Zbl0424.35084
  27. [27] C. C. WANG and C. TRUESDELL, Introduction to Rational Elasticity, Noordhoff, Groningen (1973). Zbl0308.73001MR468442

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.