Resolution of a fixed point problem by an incremental method and application in nonlinear elasticity
- Volume: 26, Issue: 7, page 893-912
- ISSN: 0764-583X
Access Full Article
topHow to cite
topNzengwa, R.. "Resolution of a fixed point problem by an incremental method and application in nonlinear elasticity." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 26.7 (1992): 893-912. <http://eudml.org/doc/193689>.
@article{Nzengwa1992,
author = {Nzengwa, R.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {pure traction boundary-value problem; live load; successive linearizations},
language = {eng},
number = {7},
pages = {893-912},
publisher = {Dunod},
title = {Resolution of a fixed point problem by an incremental method and application in nonlinear elasticity},
url = {http://eudml.org/doc/193689},
volume = {26},
year = {1992},
}
TY - JOUR
AU - Nzengwa, R.
TI - Resolution of a fixed point problem by an incremental method and application in nonlinear elasticity
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1992
PB - Dunod
VL - 26
IS - 7
SP - 893
EP - 912
LA - eng
KW - pure traction boundary-value problem; live load; successive linearizations
UR - http://eudml.org/doc/193689
ER -
References
top- [1] R. ABRAHAM and J. ROBBIN, Transversal Mappings and Flows, New York (1967). Zbl0171.44404MR240836
- [2] R. A. ADAMS, Sobolev Spaces, Academic Press, New York (1975). Zbl0314.46030MR450957
- [3] S. AGMON, A. DOUGLIS and L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm., Pure Appl. Math. XII (1959), 623-727. Zbl0093.10401
- [4] S. AGMON, A. DOUGLIS and L. NIRENBERG, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm., Pure Appl. Math. XVII (1964), 35-92. Zbl0123.28706
- [5] M. BERNADOU, P. G. CIARLET and J. HU, On the convergence of the semi-discrete incremental method in nonlinear, three-dimensional, elasticity, J. Elasticity 14 (1984), 425-440. Zbl0551.73019
- [6] D. R. J. CHILLINGWORTH, J. E. MARSDEN and Y. H. WAN, Symmetry and Bifurcation in three-dimensional elasticity, part I, Arch. Rational Mech. Anal. 80, 296-322 (1982). Zbl0509.73018
- [7] P. G. CIARLET, Élasticité Tridimensionnelle, Masson, Paris (1986). Zbl0572.73027
- [8] P. G. CIARLET, Mathematical Elasticity, Vol. I three-dimensional Elasticity, North Holland, Amsterdam, 1988. Zbl0648.73014
- [9] M. CROUZEIX and A. MIGNOT, Analyse Numérique des Équations Différentielles, Masson, Paris (1984). Zbl0635.65079
- [10] G. GEYMONAT, Sui Problemi ai limiti per i systemi lineari ellitici, Ann. Mat. Pura Appl. LXIX (1965), 207-284. Zbl0152.11102
- [11] M. E. GURTIN, Introduction to continuum mechanics, Academic Press, New York (1981). Zbl0559.73001
- [12] S. LANG, Introduction to differential manifolds, John Wiley and Sons, New York (1962). Zbl0103.15101
- [13] H. LE DRET, Quelques problèmes d'existence en élasticité non linéaire, These, Université Pierre-et-Marie Curie, Paris 6 (1982).
- [14] H. LE DRET, Contribution à l'étude de quelques problèmes issus de l'élasticité linéaire et non linéaire, Thèse d'État, Université Pierre-et-Marie Curie, Paris 6 (1988).
- [15] J. E. MARSDEN and T. J. R. HUGHES, Mathematical foundations of elasticity, Prentice-Hall, Englewood Cliffs (1983), Vol. 22, N° 2, 1988. Zbl0545.73031
- [16] J. MASON, Variational, Incremental and energy methods in solid mechanics and shell theory, Elsevier, Amsterdam (1980). Zbl0571.73008
- [17] J. NEČAS, Les méthodes directes en théorie des équations elliptiques, Masson, Paris (1967). MR227584
- [18] R. NZENGWA, Méthodes incrémentales en élasticité non linéaire ; jonction entre structures élastiques tridimensionnelle et bidimensionnelle, Thèse, Université Pierre-et-Marie Curie, Paris 6 (1987).
- [19] R. NZENGWA, Incremental methods in nonlinear three-dimensional incompressible elasticity, RAIRO Modél. Math. Anal. Numér., Vol. 22, N° 2, 1988, 311-342. Zbl0651.73003MR945127
- [20] P. PODIO-GUIDUGLI, G. VERGARA-CAFFARELLI, On a class of live traction problems in elasticiy, lecture notes in physics Trends & Applications of Pure mathematics to mechanics, proc. Palaiseau (83), 291-304. Zbl0541.73025MR755732
- [21] W. C. RHEINBOLDT, Methods for solving systems of nonlinear equations, CBMS series 14, SIAM, Philadelphia (1974). Zbl0325.65022MR1645489
- [22] W. C. RHEINBOLDT, Numerical analysis of continuation methods for nonlinear structural problems, Comput. Struct. 13 (1981), 103-113. Zbl0465.65030MR616722
- [23] S. J. SPECTOR, On uniqueness for the traction problem in finite elasticity, J. Elasticity 12, 367-383 (82). Zbl0506.73043MR685512
- [24] J. L. THOMPSON, Some existence theorems for traction boundary-value problem of linearized elastostatics, Arch. Rational Mech. Anal. 32, 369-399 (1969). Zbl0175.22108MR237130
- [25] C. TRUESDELL and W. NOLL, The nonlinear Field theories of mechanics, Handbuch der Physik, Vol. III/3, 1-602 (1965). Zbl1068.74002MR193816
- [26] T. VALENT, Sulla differenziabilità dell' operatore di Nemystky, Mend. Acc. Naz. Lincei. 65, 15-26 (1978). Zbl0424.35084
- [27] C. C. WANG and C. TRUESDELL, Introduction to Rational Elasticity, Noordhoff, Groningen (1973). Zbl0308.73001MR468442
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.