Critères d’injectivité et de surjectivité pour certaines applications de n dans lui-même ; application à la mécanique du contact

Pierre Alart

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1993)

  • Volume: 27, Issue: 2, page 203-222
  • ISSN: 0764-583X

How to cite

top

Alart, Pierre. "Critères d’injectivité et de surjectivité pour certaines applications de $\mathbb {R}^n$ dans lui-même ; application à la mécanique du contact." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.2 (1993): 203-222. <http://eudml.org/doc/193701>.

@article{Alart1993,
author = {Alart, Pierre},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {nondifferentiable continuous mappings; Clarke's generalized Jacobian; homotopy approach; uniqueness conditions; contact problems with friction},
language = {fre},
number = {2},
pages = {203-222},
publisher = {Dunod},
title = {Critères d’injectivité et de surjectivité pour certaines applications de $\mathbb \{R\}^n$ dans lui-même ; application à la mécanique du contact},
url = {http://eudml.org/doc/193701},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Alart, Pierre
TI - Critères d’injectivité et de surjectivité pour certaines applications de $\mathbb {R}^n$ dans lui-même ; application à la mécanique du contact
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 2
SP - 203
EP - 222
LA - fre
KW - nondifferentiable continuous mappings; Clarke's generalized Jacobian; homotopy approach; uniqueness conditions; contact problems with friction
UR - http://eudml.org/doc/193701
ER -

References

top
  1. [1] G. DUVAUT, 1982, Loi de frottement non locale, J. Méc. Th. et Appl., numéro spécial, 73-78. Zbl0497.73115MR670346
  2. [2] J. NECAS, J. JARUSEK, J. HASLINGER, 1980, On the Solution of the Variational Inequatlity to the Signorini Problem with Small Friction, Bolletino U.M.I, (5) 17. B, 796-811. Zbl0445.49011MR580559
  3. [3] A. KLARBRING, 1985, Contact Problems in Linear Elasticity, Ph. D. Thesis n° 133, University of Linkoping. 
  4. [4] P. ALART, A. CURNIER, 1991, A Mixed Formulation for Frictional Contact Problems Prone to Newton like Solution Methods, Computer Methods in Applied Mechanics and Engineering, 92, (3), 353-375. Zbl0825.76353MR1141048
  5. [5] I. CAPUZZO DOLCETTA, U. MOSCO, 1979, Implicit Complementarity Problems and Quasi-Vanational Inequalities, in Gianessi, Cottle, Lions eds, Variiational Inequalities and Complementarity Problems, J. Wiley. Zbl0486.49004
  6. [6] V. JANOVSKY, 1981, Catastrophic Features of Coulomb Friction Model, Proc. Mathematics of Elements and Applications, Brunel University. Zbl0504.73077
  7. [7] A. CURNIER, P. ALART, 1988, A Generalized Newton Method for Contact Problem with Friction, J. Méc. Th. Et Appl., numéro spécial : Numerical Methods in Mechanics of Contact Involving Friction, 67-82. Zbl0679.73046MR988336
  8. [8] F. H. CLARKE, 1983, Optimization and Nonsmooth Analysis, Wiley. Zbl0582.49001MR709590
  9. [9] T. PARTHASARATHY, 1983, On Global Univalence Theorems, Lecture Notes, 977, Springer Verlag. Zbl0506.90001MR694845
  10. [10] S. BANACH, S. MAZUR, 1934, Uber mehrdeutige stetige abbildungen, Studia Math. 5, 174-178. Zbl60.1227.03JFM60.1227.03
  11. [11] M. KOJIMA, R. SAIGAL, 1979, A Study of PC1 Homeomorphisms on Subdivided Polyhedrons, SIAM J. Math. Anal., 10, (6), 1299-1312. MR547815
  12. [12] J. ORTEGA, W. RHEINBOLT, 1970, Iterative Solutions of Non Linear Equations on Several Variables, Academic Press, New York. Zbl0241.65046
  13. [13] M. KOJIMA, R. SAIGAL, 1980, On the Relationship between Conditions that Insure a PL Mapping is a Homeomorphism, Mathematics of Operations Research, 5, (1). Zbl0441.57018MR561158
  14. [14] R. S. PALAIS, 1959, Natural Operations on Differential Forms, Trans. Amer. Math. Soc., 92, 125-141. Zbl0092.30802MR116352
  15. [15] C. LICHT, E. PRATT, M. RAOUS, 1990, Remarks on a Numerical Method for Unilateral Contact Including Friction, in «Unilateral Problems in Structural Analysis», Capri, Juin 89, ed. CISM. Zbl0762.73076MR1169548
  16. [16] C. MELLOUKI-FILALI, 1988, Problème des milieux continus en contact avec frottement ; stabilité et convergence des algorithmes numériques, thèse de 3e cycle, Université Montpellier II. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.