Modélisation et optimisation numérique pour la reconstruction d'un polyèdre à partir de son image gaussienne généralisée
J. Lemordant; Pham Dinh Tao; H. Zouaki
- Volume: 27, Issue: 3, page 349-374
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLemordant, J., Tao, Pham Dinh, and Zouaki, H.. "Modélisation et optimisation numérique pour la reconstruction d'un polyèdre à partir de son image gaussienne généralisée." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.3 (1993): 349-374. <http://eudml.org/doc/193706>.
@article{Lemordant1993,
author = {Lemordant, J., Tao, Pham Dinh, Zouaki, H.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {modelling; extended Gaussian image; convex polyhedron; convex optimization; reconstruction algorithm},
language = {fre},
number = {3},
pages = {349-374},
publisher = {Dunod},
title = {Modélisation et optimisation numérique pour la reconstruction d'un polyèdre à partir de son image gaussienne généralisée},
url = {http://eudml.org/doc/193706},
volume = {27},
year = {1993},
}
TY - JOUR
AU - Lemordant, J.
AU - Tao, Pham Dinh
AU - Zouaki, H.
TI - Modélisation et optimisation numérique pour la reconstruction d'un polyèdre à partir de son image gaussienne généralisée
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 3
SP - 349
EP - 374
LA - fre
KW - modelling; extended Gaussian image; convex polyhedron; convex optimization; reconstruction algorithm
UR - http://eudml.org/doc/193706
ER -
References
top- [1] M. BERGER, Géométrie volume 3, convexes et polytopes, polyèdres réguliers, aires et volumes, Nathan, Paris, 1978. Zbl0423.51001MR536872
- [2] P. BROUX, Using the Gaussian image to find the orientation of objects, Int. J. Robotics Res., vol. 3, n° 4, 1984.
- [3] D. R. CHAND and S. S. KAPUR, An algorithm for convex polytopes, JACM, vol. 17, n° 1, January 1970, pp. 78-86. Zbl0199.50902MR278177
- [4] M. P. DO CARMO, Differential geometry of curves and surfaces, Prentice Hall, New Jersey, 1976. Zbl0326.53001MR394451
- [5] H. EDELSBRUNNER, Algorithms in combinatorial geometry, EATCS Monogr. Theoret. Comput. Sci., vol, 10, Springer Verlag, 1987. Zbl0634.52001MR904271
- [6] H. G. EGGLESTON, Convexity, Cambridge University Press, 1958. Zbl0086.15302MR124813
- [7] B. GRÛNBAUM, Convex Polytopes, John Wiley and Sons ltd, London and New York, 1967. Zbl0163.16603MR226496
- [8] D. HILBERT and S. COHN-VOSSEN, Geometry and the imagination, Chelsa Publishing company, New York. Zbl0047.38806MR46650
- [9] B. K. P. HORN, Extended Gaussian images, Proceeding of IEEE, pp. 1671- 1686, December 1984.
- [10] B. K. P. HORN and K. I. IKEUCHI, The Mechanical manipulation of randomly oriented parts, Scientific American, August 1984.
- [11] K. I. IKEUCHI, Recognition of 3D objects using the extended Gaussian image, Proceedings of the seventh I.J.C.A.I., pp. 595-600, 1981.
- [12] J. B. LASSERRE, An analytical expression and an algorithm for the volume of a convex polyedron in Rn, J.O.T.A., vol. 39, n° 3, March 1983. Zbl0487.52006MR703477
- [13] J. LEMORDANT, Pham. Dinh. TAO and H. ZOUAKI, Reconstruction d'un polyèdre à partir de son image gaussienne généralisée, Journée de géométrie algorithmique, INRIA Sophia-Antipolis, 18-20 juin 1990. MR1098960
- [14] J. J. LITTLE, An iterative method for reconstracting convex polyedra from extended Gaussian image, Proceedings of A.A.A.I. 83, pp. 247-250, 1983.
- [15] J. J. LITTLE, Recovering shape and determining attitude from extended Gaussian images, Technical report TN 85-2, April 1985. University of British Columbia, Vancouver.
- [16] D. G. LUENBERGER, Introduction to linear and non linear programming, Addison-Wesley, 1973. Zbl0297.90044
- [17] L. A. LYUSTERNIK, Convex figures and polyedra, Dover publications, New York, 1963. Zbl0113.16201MR161219
- [18] P. MCMULLEN and G. C. SHEPARD, Convex polytopes and the upper bound conjecture, Cambridge University Press, 1971. Zbl0217.46702MR301635
- [19] H. MINKOWSKI, Volumen und oberfläch, Math. Ann., 57, 1903. MR1511220JFM34.0649.01
- [20] M. MINOUX, Programmation mathématiques, tome I, Dunod, Paris, 1983. Zbl0546.90056
- [21] B. PCHENITCHNY and Y. DANILINE, Méthodes numériques dans les problèmes d'extremum, Mir, 1977. Zbl0389.65027MR474818
- [22] A. V. POGORELOV, The Minkowski multidimensional problem, Winston and Sons, 1978. Zbl0387.53023MR478079
- [23] F. P. PREPARATA and S. J. HONG, Convex hulls of finite sets of points m two and three dimensions, C.A.C.M. vol 20, pp 87 93, 1977. Zbl0342.68030MR488985
- [24] R. T. ROCKAFELLAR, The theory of subgradients and its applications to problems of optimization. Convex and nonconvex functions, Heldermann Verlag, Berlin. Zbl0462.90052MR623763
- [25] S. USELTON, Surface reconstruction from limited information, U.M.I. Dissertation information service, 1981.
- [26] K. WEILER, Edge-based data structure for solid modelling in curved surface environments, IEEE Computer Graphics and Applications, January, 19851985, pp 21-24.
- [27] P. FAURE and P. HUARD, Résolution de programmes mathématiques avec la méthode du gradient réduit, R.F.R.O., n° 36, 1965, pp 167-206. Zbl0135.20001
- [28] H. ZOUAKI, Modélisation et optimisation numérique pour la reconstruction d'un polyèdre a partir de son image gaussienne généralisée, These de l'université Joseph Fourier, juillet 1991.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.