Modélisation et optimisation numérique pour la reconstruction d'un polyèdre à partir de son image gaussienne généralisée

J. Lemordant; Pham Dinh Tao; H. Zouaki

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1993)

  • Volume: 27, Issue: 3, page 349-374
  • ISSN: 0764-583X

How to cite

top

Lemordant, J., Tao, Pham Dinh, and Zouaki, H.. "Modélisation et optimisation numérique pour la reconstruction d'un polyèdre à partir de son image gaussienne généralisée." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.3 (1993): 349-374. <http://eudml.org/doc/193706>.

@article{Lemordant1993,
author = {Lemordant, J., Tao, Pham Dinh, Zouaki, H.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {modelling; extended Gaussian image; convex polyhedron; convex optimization; reconstruction algorithm},
language = {fre},
number = {3},
pages = {349-374},
publisher = {Dunod},
title = {Modélisation et optimisation numérique pour la reconstruction d'un polyèdre à partir de son image gaussienne généralisée},
url = {http://eudml.org/doc/193706},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Lemordant, J.
AU - Tao, Pham Dinh
AU - Zouaki, H.
TI - Modélisation et optimisation numérique pour la reconstruction d'un polyèdre à partir de son image gaussienne généralisée
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 3
SP - 349
EP - 374
LA - fre
KW - modelling; extended Gaussian image; convex polyhedron; convex optimization; reconstruction algorithm
UR - http://eudml.org/doc/193706
ER -

References

top
  1. [1] M. BERGER, Géométrie volume 3, convexes et polytopes, polyèdres réguliers, aires et volumes, Nathan, Paris, 1978. Zbl0423.51001MR536872
  2. [2] P. BROUX, Using the Gaussian image to find the orientation of objects, Int. J. Robotics Res., vol. 3, n° 4, 1984. 
  3. [3] D. R. CHAND and S. S. KAPUR, An algorithm for convex polytopes, JACM, vol. 17, n° 1, January 1970, pp. 78-86. Zbl0199.50902MR278177
  4. [4] M. P. DO CARMO, Differential geometry of curves and surfaces, Prentice Hall, New Jersey, 1976. Zbl0326.53001MR394451
  5. [5] H. EDELSBRUNNER, Algorithms in combinatorial geometry, EATCS Monogr. Theoret. Comput. Sci., vol, 10, Springer Verlag, 1987. Zbl0634.52001MR904271
  6. [6] H. G. EGGLESTON, Convexity, Cambridge University Press, 1958. Zbl0086.15302MR124813
  7. [7] B. GRÛNBAUM, Convex Polytopes, John Wiley and Sons ltd, London and New York, 1967. Zbl0163.16603MR226496
  8. [8] D. HILBERT and S. COHN-VOSSEN, Geometry and the imagination, Chelsa Publishing company, New York. Zbl0047.38806MR46650
  9. [9] B. K. P. HORN, Extended Gaussian images, Proceeding of IEEE, pp. 1671- 1686, December 1984. 
  10. [10] B. K. P. HORN and K. I. IKEUCHI, The Mechanical manipulation of randomly oriented parts, Scientific American, August 1984. 
  11. [11] K. I. IKEUCHI, Recognition of 3D objects using the extended Gaussian image, Proceedings of the seventh I.J.C.A.I., pp. 595-600, 1981. 
  12. [12] J. B. LASSERRE, An analytical expression and an algorithm for the volume of a convex polyedron in Rn, J.O.T.A., vol. 39, n° 3, March 1983. Zbl0487.52006MR703477
  13. [13] J. LEMORDANT, Pham. Dinh. TAO and H. ZOUAKI, Reconstruction d'un polyèdre à partir de son image gaussienne généralisée, Journée de géométrie algorithmique, INRIA Sophia-Antipolis, 18-20 juin 1990. MR1098960
  14. [14] J. J. LITTLE, An iterative method for reconstracting convex polyedra from extended Gaussian image, Proceedings of A.A.A.I. 83, pp. 247-250, 1983. 
  15. [15] J. J. LITTLE, Recovering shape and determining attitude from extended Gaussian images, Technical report TN 85-2, April 1985. University of British Columbia, Vancouver. 
  16. [16] D. G. LUENBERGER, Introduction to linear and non linear programming, Addison-Wesley, 1973. Zbl0297.90044
  17. [17] L. A. LYUSTERNIK, Convex figures and polyedra, Dover publications, New York, 1963. Zbl0113.16201MR161219
  18. [18] P. MCMULLEN and G. C. SHEPARD, Convex polytopes and the upper bound conjecture, Cambridge University Press, 1971. Zbl0217.46702MR301635
  19. [19] H. MINKOWSKI, Volumen und oberfläch, Math. Ann., 57, 1903. MR1511220JFM34.0649.01
  20. [20] M. MINOUX, Programmation mathématiques, tome I, Dunod, Paris, 1983. Zbl0546.90056
  21. [21] B. PCHENITCHNY and Y. DANILINE, Méthodes numériques dans les problèmes d'extremum, Mir, 1977. Zbl0389.65027MR474818
  22. [22] A. V. POGORELOV, The Minkowski multidimensional problem, Winston and Sons, 1978. Zbl0387.53023MR478079
  23. [23] F. P. PREPARATA and S. J. HONG, Convex hulls of finite sets of points m two and three dimensions, C.A.C.M. vol 20, pp 87 93, 1977. Zbl0342.68030MR488985
  24. [24] R. T. ROCKAFELLAR, The theory of subgradients and its applications to problems of optimization. Convex and nonconvex functions, Heldermann Verlag, Berlin. Zbl0462.90052MR623763
  25. [25] S. USELTON, Surface reconstruction from limited information, U.M.I. Dissertation information service, 1981. 
  26. [26] K. WEILER, Edge-based data structure for solid modelling in curved surface environments, IEEE Computer Graphics and Applications, January, 19851985, pp 21-24. 
  27. [27] P. FAURE and P. HUARD, Résolution de programmes mathématiques avec la méthode du gradient réduit, R.F.R.O., n° 36, 1965, pp 167-206. Zbl0135.20001
  28. [28] H. ZOUAKI, Modélisation et optimisation numérique pour la reconstruction d'un polyèdre a partir de son image gaussienne généralisée, These de l'université Joseph Fourier, juillet 1991. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.