On the discrete maximum principle for parabolic difference operators

Hung-Ju Kuo; N. S. Trudinger

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1993)

  • Volume: 27, Issue: 6, page 719-737
  • ISSN: 0764-583X

How to cite

top

Kuo, Hung-Ju, and Trudinger, N. S.. "On the discrete maximum principle for parabolic difference operators." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.6 (1993): 719-737. <http://eudml.org/doc/193720>.

@article{Kuo1993,
author = {Kuo, Hung-Ju, Trudinger, N. S.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {parabolic difference inequalities; Krylov maximum principle; explicit and implicit difference schemes; random coefficients},
language = {eng},
number = {6},
pages = {719-737},
publisher = {Dunod},
title = {On the discrete maximum principle for parabolic difference operators},
url = {http://eudml.org/doc/193720},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Kuo, Hung-Ju
AU - Trudinger, N. S.
TI - On the discrete maximum principle for parabolic difference operators
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 6
SP - 719
EP - 737
LA - eng
KW - parabolic difference inequalities; Krylov maximum principle; explicit and implicit difference schemes; random coefficients
UR - http://eudml.org/doc/193720
ER -

References

top
  1. [1] A. D. ALEKSANDROV, Uniqueness conditions and estimates for the solution of the Dirichlet problem, Vestnik Leningrad. Univ. 18, 1963, no. 3, pp. 5-29, English transl., Amer. Math. Soc. Transl. 1968, 2, 68, pp. 89-119. Zbl0177.36802MR164135
  2. [2] I. YA BAKEL'MAN, Geometric methods for solving elliptic equations, Nauka, Moscow, 1965 (In Russian). 
  3. [3] D. GILBARG and N. S. TRUDINGER, Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York and Tokyo, 1983. Zbl0361.35003MR737190
  4. [4] N. V. KRYLOV, Sequence of convex functions and estimates of maximum of the solution of a parabolic equation, Sibirsk Mat. Ž 1976, 17, pp. 290-303 : English translation in Siberian Math. J. 1976, 17, pp. 226-237. Zbl0362.35038MR420016
  5. [5] N. V. KRYLOV, Nonlinear elliptic and parabolic equations of the second order, Nauka, Moscow, 1985 (In Russian). English translation by D. Reidel Publishing Company, Dordrecht, Holland, 1987. Zbl0619.35004MR901759
  6. [6] H. J. KUO and N. S. TRUDINGER, Linear elliptic difference inequalities with random coefficients, Math. Comp. 1990, 55, pp. 37-53. Zbl0716.39005MR1023049
  7. [7] H. J. KUO and N. S. TRUDINGER, Discrete methods for fully nonlinear elliptic equations, SIAM J. on Numer. Anal. 1992, 29, pp. 123-135. Zbl0745.65058MR1149088
  8. [8] T. MOTZKIN and W. WASOW, On the approximation of linear elliptic differential equations by difference equations with positive coefficients, J. Math. Phys. 1952, 31, pp. 253-259. Zbl0050.12501MR52895
  9. [9] A. I. NAZAROV and N. N. URAL TSEVA, Convex monotone hulls and estimaties of the maximum of the solution of parabolic equations, Zap. Nauchn Sem. LOMI, 1985, 147, pp. 71-86 (In Russian). Zbl0596.35008MR821477
  10. [10] S. J. REYE, Harnack inequalities for parabolic equations in general form with bounded measurable coefficients, Research Report R44-84, Centre for Math. Anal. Aust. Nat. Univ. (1984) (see also Doctoral dissertation : Fully non-linear parabolic differential equations of second order, Aust. Nat. Univ. 1985). 
  11. [11] K. TSO, On an Aleksandrov-Bakel'man type maximum principle for second order parabolic equations, Comm. Partial Differential Equations 1985, 10, pp. 543-553. Zbl0581.35027MR790223

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.