Fully nonlinear second order elliptic equations : recent development
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 25, Issue: 3-4, page 569-595
- ISSN: 0391-173X
Access Full Article
topHow to cite
topKrylov, Nicolai V.. "Fully nonlinear second order elliptic equations : recent development." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.3-4 (1997): 569-595. <http://eudml.org/doc/84305>.
@article{Krylov1997,
author = {Krylov, Nicolai V.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3-4},
pages = {569-595},
publisher = {Scuola normale superiore},
title = {Fully nonlinear second order elliptic equations : recent development},
url = {http://eudml.org/doc/84305},
volume = {25},
year = {1997},
}
TY - JOUR
AU - Krylov, Nicolai V.
TI - Fully nonlinear second order elliptic equations : recent development
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 3-4
SP - 569
EP - 595
LA - eng
UR - http://eudml.org/doc/84305
ER -
References
top- [1] A.D. Aleksandrov, Dirichlet's problem for the equation Det ∥zij∥ = ϕ(z1, ... , zn, z, x1, ... , xn), Vestnik Leningrad Univ., Vol. 13, No. 1 (1958), 5-24 in Russian. Zbl0114.30202
- [2] A.D. Aleksandrov, Research into maximum principle. VI, Izvestiya Vysshikh Uchebnykh Zavedenii, Ser. Math. No. 1 (1961), 3-20 in Russian. MR133574
- [3] A.D. Aleksandrov, Uniqueness conditions and estimates for solutions of the Dirichlet problem, Vestnik Leningrad. Univ., Vol. 18, No. 3 (1963), 5-29. English translation in Amer. Math. Soc. Transl. (2) Vol. 68 (1968), 89-119. Zbl0177.36802MR164135
- [4] B. Andrews, Evolving Convex Hypersurfaces, Thesis, Australian Nat. University, 1993. MR1332497
- [5] S.V. Anulova - M.V. Safonov, Control of a diffusion process in a region with fixed reflection on the boundary, pp. 1-15 in "Statistics and Controlled Stoch. Processes", Steklov Seminars 1985-86, Vol. 2, Optimization Software Inc., New York, 1989. Zbl0753.93080MR808193
- [6] I. Ya. Bakel'man, "Geometricheskie Metody Reshenia Ellipticheskikh Uravnenni", Nauka, Moscow, 1965 in Russian.
- [7] G. Barles - P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymp. Anal., Vol. 4, No. 3 (1991), 271-283. Zbl0729.65077MR1115933
- [8] S. Bernstein, Sur la généralization du problèms de Dirichlet. (Deuxième partie), Math. Annalen., Vol. 69 (1910), 82-136. Zbl41.0427.02MR1511579JFM41.0427.02
- [9] L.A. Caffarell, Interior a priori estimates for solutions of fully nonlinear equations, Annals of Math.130 No. 1 (1989), 189-213. Zbl0692.35017MR1005611
- [10] L.A. Caffarelli, Interior W2,p -estimates for solutions of the Monge-Ampère equation, Annals of Math.131 No. 1 (1990), 135-150. Zbl0704.35044MR1038360
- [11] L.A. Caffarelli, The regularity of mappings with convex potentials, J. Amer. Math. Soc. Vol. 5 (1992), 99-104. Zbl0753.35031MR1124980
- [12] L.A. Caffarelli, Boundary regularity of maps with convex potentials, Comm. Pure Appl. Math. Vol. 45 (1992), 1141-1151. Zbl0778.35015MR1177479
- [13] L.A. Caffarelli - X. Cabré, "Fully Nonlinear Elliptic Equations", Colloquium Publications Vol. 43, American Math. Soc., Providence, RI, 1995. Zbl0834.35002MR1351007
- [14] L. Caffarelli - L. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, I. Monge-Ampère equations, Comm. Pure Appl. Math. Vol. 37 (1984), 369-402. Zbl0598.35047MR739925
- [15] L. Caffarelli - J.J. Kohn - L. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, II. Complex Monge-Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math. Vol. 38 (1985), 209-252. Zbl0598.35048MR780073
- [16] L. Caffarelli - L. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, III. Functions of the eigenvalues of the Hessian, Acta Math., Vol. 155, No. 3-4 (1985), 261-301. Zbl0654.35031MR806416
- [17] L. Caffarelli - L. Nirenberg - J. Spruck, The Dirichlet problem for the degenerate Monge-Ampère equation, Revista Mat. Iberoamericana, Vol. 86, No. 1, 2 (1986), 19-27. Zbl0611.35029MR864651
- [18] L. Caffarelli - L. Nirenberg - J. Spruck, Nonlinear second order equations, IV. The Dirichlet problem for Weingarten surfaces, Comm. Pure Appl. Math. Vol. 41 (1988), 47-70. Zbl0672.35028MR917124
- [19] E. Calabi, Improper affine hypersurfaces of convex type and a generalization of a theorem by K. Jorgens, Michigan. Math. J. Vol. 5 (1958), 2. Zbl0113.30104MR106487
- [20] P. Cannarsa - F. Gozzi - H.T. Soner, A dynamic programming approach to nonlinear boundary control problems of parabolic type, preprint. Zbl0823.49017
- [21] S.Y. Cheng - S.T. Yau, On the regularity of the Monge-Ampère equation det (∂2u/ ∂xi∂xj) = F(x, u), Comm. Pure Appl. Math. Vol. 30 (1977), 41-68. Zbl0347.35019
- [22] R. Courant - D. Hilbert, "Methods of Mathematical Physics", Vol. 2, Interscience Publishers, NY, 1962. Zbl0099.29504
- [23] M.G. Crandall - H. Ishii - P.L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin Amer. Math. Soc. Vol. 27, No. 1 (1992), 1-67. Zbl0755.35015MR1118699
- [24] P. Delanoë P., Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator, Ann. Inst. Henri Poincaré, Vol. 8, No. 5 (1991), 443-457. Zbl0778.35037MR1136351
- [25] L.C. Evans, Classical solutions offully nonlinear convex, second order elliptic equations, Comm. Pure Appl. Math., Vol. 25 (1982), 333-363. Zbl0469.35022MR649348
- [26] L.C. Evans, Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators, Trans. Amer. Math. Soc., Vol. 275 (1983), 245-255. MR678347
- [27] W. Fleming - M. Sooner, "Controlled Markov Processes and Viscosity Solutions", Springer Verlag, 1993. Zbl0773.60070MR1199811
- [28] C. Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Diff. Geom. Vol. 32 (1990), 299-314. Zbl0708.53045MR1064876
- [29] D. Gilbarg - N.S. Trudinger, "Elliptic Partial Differential Equations of Second Order", 2nd ed., Springer Verlag, Berlin, 1983. Zbl0562.35001MR737190
- [30] B. Guan, The Dirichlet problem for a class offully nonlinear elliptic equations, Comm. in PDE, Vol. 19, No. 3-4 (1994), 399-416. Zbl0796.35045MR1265805
- [31] B. Guan, The Dirichlet Problem for Monge-Ampère Equations in non-Convex domains, preprint. Zbl0919.35046
- [32] B. Guan - Y.Y. Li, Monge-Ampère Equations on Riemannian Manifolds, preprint. MR1418503
- [33] B. Guan - J. Spruck, Boundary value problem on Sn for surfaces of constant Gauss curvature, Annals of Math., Vol. 138 (1993), 601-624. Zbl0840.53046MR1247995
- [34] N.M. Ivochkina, Classical solvability of the Dirichlet problem for the Monge-Ampère equation, Zapiski Nauchn. Sem. LOMI AN SSSR, Vol. 131 (1983), 72-79 in Russian. English translation in J. Soviet Math. Vol. 30, No. 4 (1985), 2287-2292. Zbl0569.35014MR718679
- [35] N.M. Ivochkina, Solution of the Dirichlet problem for curvature equation of order m, Math. Sbornik, Vol. 180 No. 7 (1989), 867-887 in Russian. English translation in Math.USSR-Sb., Vol. 67, No. 2 (1990), 317-339. Zbl0709.35046MR1014618
- [36] N.M. Ivochkina, The Dirichlet problem for the equations of curvature of order m, English translation in Leningrad Math. J. Vol. 2 No. 3 (1991), 631-654. Zbl0732.35031MR1073214
- [37] B. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mach. Anal. Vol. 101 No. 1 (1988), 1-27. Zbl0708.35019MR920674
- [38] J.J. Kohn - L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure and Appl. Math. Vol. 20, No. 4 (1967), 797-872. Zbl0153.14503MR234118
- [39] N.J. Korevaar, A priori interior gradient bounds for solutions to elliptic Weingarten equations, Ann. Inst. Henri Poincaré, Analyse non lineaire, Vol. 4 No. 5 (1987), 405-421. Zbl0644.35041MR921546
- [40] N.V. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 46 No. 3 (1982), 487-523. English translation in Math. USSR Izvestija, Vol. 20 No. 3 (1983), 459-492. Zbl0529.35026MR661144
- [41] N.V. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations in a domain, Izvestija Akad. Nauk SSSR, ser. mat., Vol. 47 No. 1 (1983), 75-108. English translation in Math. USSR Izvestija Vol. 22 No. 1 (1984), 67-97. Zbl0578.35024MR688919
- [42] N.V. Krylov, On degenerate nonlinear elliptic equations II, Matematicheski Sbornik, Vol. 121 No. 2 (1983), 211-232 in Russian. English translation in Math. USSR Sbornik Vol. 49 No. 1 (1984), 207-228. MR703325
- [43] N.V. Krylov, On estimates for the derivatives of solutions of nonlinear parabolic equations, Doklady Acad. Nauk SSSR, Vol. 274 No. 1 (1984), 23-26. English translation in Soviet Math. Dokl. Vol. 29 No. 1 (1984), 14-17. Zbl0598.35057MR730158
- [44] N.V. Krylov, "Nonlinear Elliptic and Parabolic Equations of Second Order", Nauka, Moscow, 1985 in Russian. English translation: Reidel, Dordrecht, 1987. Zbl0586.35002MR815513
- [45] N.V. Krylov, Some new results in the theory of nonlinear elliptic and parabolic equations, Proceed. of Intern. Congr. of Math., Berkeley Vol. 2 (1986), 1101-1109. Zbl0697.35043MR934313
- [46] N.V. Krylov, Smoothness of the value function for a controlled diffusion process in a domain, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 53 No. 1 (1989), 66-96 in Russian. English translation in Math. USSR Izvestija Vol. 34, No. 1 (1990), 65-96. Zbl0701.93054MR992979
- [47] N.V. Krylov, On first quasiderivatives of solutions of Itô's stochastic equations, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 56 No. 2 (1992), 398-426 in Russian. English translation in Math. USSR Izvestija Vol. 40 (1993). Zbl0778.60044MR1180379
- [48] N.V. Krylov, "Lectures on Fully Nonlinear Second Order Elliptic Equations", Vorlesungsreihe No. 29, Rheinische Friedrich-Wilhelms-Universität, Sonderforschungsbereich 256, Bonn, 1993, 85.
- [49] N.V. Krylov, Interior first order derivative estimates for solutions of nonlinear degenerate elliptic equations with constant coefficients, Comm. in PDE, Vol. 18 No. 1-2 (1993), 1-40. Zbl0816.35038MR1211724
- [50] N.V. Krylov, On the general notion of fully nonlinear second order elliptic equation, Trans. Amer. Math. Soc. Vol. 347 No. 3, (1995), 857-895. Zbl0832.35042MR1284912
- [51] N.V. Krylov, A theorem on degenerate elliptic Bellman equations in bounded domains, Differential and Integr. Eq. Vol. 8 No. 5 (1995), 961-980. Zbl0880.35042MR1325541
- [52] N.V. Krylov - M.V. Safonov, An estimate of the probability that a diffusion process hits a set of positive measure, Doklady Acad. Nauk SSSR Vol. 245 No. 1 (1979), 18-20. English translation in Soviet Math. Dokl. Vol. 20 No. 2 (1979), 253-255. Zbl0459.60067MR525227
- [53] N.V. Krylov - M.V. Safonov, A certain property of solutions ofparabolic equations with measurable coefficients, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 44 No. 1 (1980), 161-175. English translation in Math. USSR Izvestija, Vol. 16, No. 1 (1981), 151-164. Zbl0464.35035MR563790
- [54] H.J. Kuo - N.S. Trudinger, Discrete methods for fully nonlinear elliptic equations, SIAM J. on Numer. Anal. Vol. 29 (1992), 123-135. Zbl0745.65058MR1149088
- [55] H.J. Kuo - N.S. Trudinger, On the discrete maximum principle for parabolic difference operators, Math. Modelling and Numer. Anal. Vol. 27 No. 6 (1993), 719-737. Zbl0787.65059MR1246996
- [56] H.J. Kushner - P.G. Dupuis, "Numerical Methods for Stochastic Control Problems in Continuous Time", Springer-Verlag, 1992. Zbl0754.65068MR1217486
- [57] N. Kutev, On the solvability of Monge-Ampère type equations in non-uniformly convex domains, Math. Z. Vol. 208 (1991), 167-176. Zbl0757.35022MR1128703
- [58] N. Kutev, On the solvability of Dirichlet's problem for a class of nonlinear elliptic and parabolic equations, International Conference on Differential Equations, Barselona, 26-31 August 1991, Eds: C. Perelló, C. Simó and J. Solà-Morales, World Scientific, Singapore- New Jersey-London-Hong Kong Vol. 2, 666-670. Zbl0938.35500MR1242316
- [59] H. Lewy, A priori limitations for solutions of Monge-Ampère equations I, II, Trans. Amer. Math. Soc. Vol. 37 (1935), 417-434; Vol. 42 (1937), 365-374. Zbl61.0513.02MR1501794JFM61.0513.02
- [60] G.M. Liberman - N.S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. Amer. Math. Soc. Vol. 295 No. 2 (1986), 509-546. Zbl0619.35047MR833695
- [61] M. Lin - N.S. Trudinger, The Dirichlet Problem for the Prescribed Curvature Quotient Equations, preprint, 1994. Zbl0812.58016MR1281990
- [62] P.L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part III. Uniqueness of viscosity solutions of general second order equations, J. Funct. Anal. Vol. 86 (1989), 1-18. Zbl0757.93084MR1013931
- [63] P.L. Lions - N.S. Trudinger, Neumann problems for uniformly elliptic Bellman equations, Math. Z., Vol. 191 (1985), 1-15. Zbl0593.35046MR812598
- [64] P.L. Lions - N.S. Trudinger - J.I.E. Urbas, The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math. Vol. 39 (1986), 539-563. Zbl0604.35027MR840340
- [65] H. Minkowski, Volumen und Oberfläche, Math. Ann. Vol. 57 (1903). MR1511220JFM34.0649.01
- [66] C. Miranda, Su un problema di Minkowski, Rend. Sem. Mat. Roma Vol. 3 (1939). Zbl0021.35701MR518JFM65.0828.01
- [67] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. Vol. 6 (1953). Zbl0051.12402MR58265
- [68] O.A. Oleinik - E.V. Radkevich, "Second Order Equations with Nonnegative Characteristic form", Itogi Nauki, Mat. Analiz1969, VINITI, Moscow, 1971 in Russian. English translation: Amer. Math. Soc., Plenum Press, Providence R.I., 1973. Zbl0217.41502MR457907
- [69] A.V. Pogorelov, Regularity of convex surfaces with prescribed Gaussian curvature, Matem. Sbornik Vol. 31, 1 (1952), 88-103 in Russian. Zbl0048.40501MR52807
- [70] A.V. Pocorelov, Monge-Ampère equations of elliptic type, Izd-vo Kharkovskogo Un-ta, Kharkov, 1960 in Russian. English translation: Noordhoff, Groningen, 1964. Zbl0133.04902MR180763
- [71] A.V. Pocorelov, The Dirichlet problem for the n-dimensional analogue of the Monge-Ampère equation, Dokl. Akad. Nauk SSSR Vol. 201 No. 4 (1971), 790-793 in Russian. English translation in Soviet Math. Dokl. Vol. 12 (1971), 1727-1731. Zbl0238.35071MR293228
- [72] A.V. Pogorelov, "The Minkowski Multidimensional Problem", Nauka, Moscow, 1975 in Russian. English translation: J. Wiley, New York, 1978. Zbl0387.53023MR478079
- [73] G. Pragarauskas, Uniqueness of the solution of the Bellman equation in the case of general controlled random processes, Lit. Mat. Sbornik Vol. 22 No. 2 (1982), 137-156 in Russian. English translation in Lithuanian Math. J. Vol. 22 No. 2 (1982), 160-168. Zbl0568.49010MR659026
- [74] G. Pragarauskas, Approximation of controlled solutions of Itô equations by controlled Markov chains, Lit. Mat. Sbornik Vol. 23 No. 1 (1983), 175-188 in Russian. English translation in Lithuanian Math. J. Vol. 23 No. 1 (1983), 98-108. Zbl0529.60082MR705739
- [75] M.V. Safonov, Harnack inequality for elliptic equations and the Hölder property of their solutions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) Vol. 96 (1980), 272-287 in Russian. English translation in J. Soviet Math. Vol. 21 No. 5 (1983), 851-863. Zbl0458.35028MR579490
- [76] M.V. Safonov, On the classical solution of Bellman's elliptic equations, Dokl. Akad. Nauk SSSR, Vol. 278 No. 4(1984), 810-813 in Russian. English translation in Soviet Math. Dokl. Vol. 30 No. 2 (1984), 482-485. Zbl0595.35011MR765302
- [77] M.V. Safonov, Unimprovability of estimates of Hölder constants for solutions of linear elliptic equations with measurable coefficients, Matem. Sbornik Vol. 132 No. 2 (1987), 275-288 in Russian. English translation in Math. USSR Sbornik Vol. 60 No. 1 (1988), 269-281. Zbl0656.35027MR882838
- [78] M.V. Safonov, On the classical solution ofnonlinear elliptic equations of second order, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 137 No. 2 (1988), 184-201 in Russian. English translation in Math. USSR Izvestija Vol. 33 No. 3 (1989), 597-612. Zbl0682.35048MR984219
- [79] D. Tataru, Viscosity solutions for Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl. Vol. 163 (1992), 345-392. Zbl0757.35034MR1145836
- [80] D. Tataru, Viscosity solutions for the dynamic programming equations, Applied Math. and Optimiz. Vol. 25 (1992), 109-126. Zbl0760.49017MR1142677
- [81] N.S. Trudinger, Fully nonlinear, uniformly elliptic equations under natural structure conditions, Trans. Amer. Math. Soc. Vol. 278 No. 2 (1983), 751-769. Zbl0518.35036MR701522
- [82] N.S. Trudinger, Hölder gradient estimates for fully nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh, Sect. A Vol. 108 (1988), 57-65. Zbl0653.35026MR931007
- [83] N.S. Trudinger, On the twice differentiability of viscosity solutions of nonlinear elliptic equations, Bull. Austral. Math. Soc. Vol. 39 (1989), 443-447. Zbl0706.35031MR995142
- [84] N.S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rat. Mech. Anal. Vol. 111 No. 2 (1990), 153-179. Zbl0721.35018MR1057653
- [85] N.S. Trudinger, A priori bounds and necessary conditions for solvability ofprescribed curvature equations, Manuscripta Nath. Vol. 67 (1990), 99-112. Zbl0703.35070MR1037998
- [86] N.S. Trudinger - J.I.E. Urbas, The Dirichlet problem for the equation ofprescribed Gauss curvature, Bull. Aust. Math. Soc. Vol. 28 (1983), 217-231. Zbl0524.35047MR729009
- [87] N.S. Trudinger - J.I.E. Urbas, On second derivatives estimates for equations of Monge-Ampère type, Bull. Austral. Math. Soc. Vol. 30 (1984), 321-334. Zbl0557.35054MR766792
- [88] K. Tso, Deforming a hypersurface by its Gauss-Kroneker curvature, Comm. Pure and Appl. Math Vol. 38 (1985), 867-882. Zbl0612.53005MR812353
- [89] J.I.E. Urbas, " Elliptic Equations of Monge-Ampère Type", PhD thesis, Australian Nat. University, 1984. Zbl0557.35054
- [90] J.I.E. Urbas, Global Hölder estimates for equations of Monge-Ampère type, Invent. Math. Vol. 91 (1988), 1-29. Zbl0674.35026MR918234
- [91] J.I.E. Urbas, Regularity of generalized solutions of Monge-Ampère equations, Math. Zeit. Vol. 197 (1988), 365-393. Zbl0617.35017MR926846
- [92] J.I.E. Urbas, On the existence of nonclassical solutions for two classes offully nonlinear elliptic equations, Indiana Univ. Math. J. Vol. 39 No. 4 (1990), 355-382. Zbl0724.35028MR1089043
- [93] J.I.E. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Zeit. Vol. 205 (1990), 355-372. Zbl0691.35048MR1082861
- [94] J.I.E. Urbas, Regularity of almost extremal solutions of Monge-Ampère equations, Proc. Royal Soc. EdinburghA Vol. 117 (1991), 21-29. Zbl0735.35036MR1096216
- [95] J.I.E. Urbas, Boundary regularity for solutions of the equation of prescribed Gauss curvature, Ann. Inst. Henri Poincaré, Analyse non lineaire Vol. 8 No. 5 (1991), 499-522. Zbl0757.35024MR1136354
- [96] J.I.E. Urbas, An expansion of convex hypersurfaces, J. Diff. Geom. Vol. 33 (1991), 91-125; corrections to, ibid. Vol 35, 763-765. Zbl0746.53006MR1085136
- [97] J.I.E. Urbas, Nonlinear Oblique Boundary Value Problems for two Dimensional Curvature Equations, preprint. Zbl0853.35046
- [98] Wang Lihe, On the regularity theory offully nonlinear parabolic equations I-III, Comm. Pure Appl. Math. Vol. 45 (1992), 27-76, 141-178, 255-262. Zbl0794.35075MR1135923
- [99] Wang Rouhuai - Wang Guanglie, On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeastern Math. J. Vol. 8 No. 4 (1992), 417-446. Zbl0783.35028MR1210195
- [100] Wang Rouhuai - Wang Guanglie, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Diff. Eqs. Vol. 6 No. 3 (1993), 237-254. Zbl0811.35053MR1234574
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.