Fully nonlinear second order elliptic equations : recent development

Nicolai V. Krylov

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 25, Issue: 3-4, page 569-595
  • ISSN: 0391-173X

How to cite

top

Krylov, Nicolai V.. "Fully nonlinear second order elliptic equations : recent development." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.3-4 (1997): 569-595. <http://eudml.org/doc/84305>.

@article{Krylov1997,
author = {Krylov, Nicolai V.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3-4},
pages = {569-595},
publisher = {Scuola normale superiore},
title = {Fully nonlinear second order elliptic equations : recent development},
url = {http://eudml.org/doc/84305},
volume = {25},
year = {1997},
}

TY - JOUR
AU - Krylov, Nicolai V.
TI - Fully nonlinear second order elliptic equations : recent development
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 3-4
SP - 569
EP - 595
LA - eng
UR - http://eudml.org/doc/84305
ER -

References

top
  1. [1] A.D. Aleksandrov, Dirichlet's problem for the equation Det ∥zij∥ = ϕ(z1, ... , zn, z, x1, ... , xn), Vestnik Leningrad Univ., Vol. 13, No. 1 (1958), 5-24 in Russian. Zbl0114.30202
  2. [2] A.D. Aleksandrov, Research into maximum principle. VI, Izvestiya Vysshikh Uchebnykh Zavedenii, Ser. Math. No. 1 (1961), 3-20 in Russian. MR133574
  3. [3] A.D. Aleksandrov, Uniqueness conditions and estimates for solutions of the Dirichlet problem, Vestnik Leningrad. Univ., Vol. 18, No. 3 (1963), 5-29. English translation in Amer. Math. Soc. Transl. (2) Vol. 68 (1968), 89-119. Zbl0177.36802MR164135
  4. [4] B. Andrews, Evolving Convex Hypersurfaces, Thesis, Australian Nat. University, 1993. MR1332497
  5. [5] S.V. Anulova - M.V. Safonov, Control of a diffusion process in a region with fixed reflection on the boundary, pp. 1-15 in "Statistics and Controlled Stoch. Processes", Steklov Seminars 1985-86, Vol. 2, Optimization Software Inc., New York, 1989. Zbl0753.93080MR808193
  6. [6] I. Ya. Bakel'man, "Geometricheskie Metody Reshenia Ellipticheskikh Uravnenni", Nauka, Moscow, 1965 in Russian. 
  7. [7] G. Barles - P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asymp. Anal., Vol. 4, No. 3 (1991), 271-283. Zbl0729.65077MR1115933
  8. [8] S. Bernstein, Sur la généralization du problèms de Dirichlet. (Deuxième partie), Math. Annalen., Vol. 69 (1910), 82-136. Zbl41.0427.02MR1511579JFM41.0427.02
  9. [9] L.A. Caffarell, Interior a priori estimates for solutions of fully nonlinear equations, Annals of Math.130 No. 1 (1989), 189-213. Zbl0692.35017MR1005611
  10. [10] L.A. Caffarelli, Interior W2,p -estimates for solutions of the Monge-Ampère equation, Annals of Math.131 No. 1 (1990), 135-150. Zbl0704.35044MR1038360
  11. [11] L.A. Caffarelli, The regularity of mappings with convex potentials, J. Amer. Math. Soc. Vol. 5 (1992), 99-104. Zbl0753.35031MR1124980
  12. [12] L.A. Caffarelli, Boundary regularity of maps with convex potentials, Comm. Pure Appl. Math. Vol. 45 (1992), 1141-1151. Zbl0778.35015MR1177479
  13. [13] L.A. Caffarelli - X. Cabré, "Fully Nonlinear Elliptic Equations", Colloquium Publications Vol. 43, American Math. Soc., Providence, RI, 1995. Zbl0834.35002MR1351007
  14. [14] L. Caffarelli - L. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, I. Monge-Ampère equations, Comm. Pure Appl. Math. Vol. 37 (1984), 369-402. Zbl0598.35047MR739925
  15. [15] L. Caffarelli - J.J. Kohn - L. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, II. Complex Monge-Ampère, and uniformly elliptic, equations, Comm. Pure Appl. Math. Vol. 38 (1985), 209-252. Zbl0598.35048MR780073
  16. [16] L. Caffarelli - L. Nirenberg - J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations, III. Functions of the eigenvalues of the Hessian, Acta Math., Vol. 155, No. 3-4 (1985), 261-301. Zbl0654.35031MR806416
  17. [17] L. Caffarelli - L. Nirenberg - J. Spruck, The Dirichlet problem for the degenerate Monge-Ampère equation, Revista Mat. Iberoamericana, Vol. 86, No. 1, 2 (1986), 19-27. Zbl0611.35029MR864651
  18. [18] L. Caffarelli - L. Nirenberg - J. Spruck, Nonlinear second order equations, IV. The Dirichlet problem for Weingarten surfaces, Comm. Pure Appl. Math. Vol. 41 (1988), 47-70. Zbl0672.35028MR917124
  19. [19] E. Calabi, Improper affine hypersurfaces of convex type and a generalization of a theorem by K. Jorgens, Michigan. Math. J. Vol. 5 (1958), 2. Zbl0113.30104MR106487
  20. [20] P. Cannarsa - F. Gozzi - H.T. Soner, A dynamic programming approach to nonlinear boundary control problems of parabolic type, preprint. Zbl0823.49017
  21. [21] S.Y. Cheng - S.T. Yau, On the regularity of the Monge-Ampère equation det (∂2u/ ∂xi∂xj) = F(x, u), Comm. Pure Appl. Math. Vol. 30 (1977), 41-68. Zbl0347.35019
  22. [22] R. Courant - D. Hilbert, "Methods of Mathematical Physics", Vol. 2, Interscience Publishers, NY, 1962. Zbl0099.29504
  23. [23] M.G. Crandall - H. Ishii - P.L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bulletin Amer. Math. Soc. Vol. 27, No. 1 (1992), 1-67. Zbl0755.35015MR1118699
  24. [24] P. Delanoë P., Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator, Ann. Inst. Henri Poincaré, Vol. 8, No. 5 (1991), 443-457. Zbl0778.35037MR1136351
  25. [25] L.C. Evans, Classical solutions offully nonlinear convex, second order elliptic equations, Comm. Pure Appl. Math., Vol. 25 (1982), 333-363. Zbl0469.35022MR649348
  26. [26] L.C. Evans, Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators, Trans. Amer. Math. Soc., Vol. 275 (1983), 245-255. MR678347
  27. [27] W. Fleming - M. Sooner, "Controlled Markov Processes and Viscosity Solutions", Springer Verlag, 1993. Zbl0773.60070MR1199811
  28. [28] C. Gerhardt, Flow of nonconvex hypersurfaces into spheres, J. Diff. Geom. Vol. 32 (1990), 299-314. Zbl0708.53045MR1064876
  29. [29] D. Gilbarg - N.S. Trudinger, "Elliptic Partial Differential Equations of Second Order", 2nd ed., Springer Verlag, Berlin, 1983. Zbl0562.35001MR737190
  30. [30] B. Guan, The Dirichlet problem for a class offully nonlinear elliptic equations, Comm. in PDE, Vol. 19, No. 3-4 (1994), 399-416. Zbl0796.35045MR1265805
  31. [31] B. Guan, The Dirichlet Problem for Monge-Ampère Equations in non-Convex domains, preprint. Zbl0919.35046
  32. [32] B. Guan - Y.Y. Li, Monge-Ampère Equations on Riemannian Manifolds, preprint. MR1418503
  33. [33] B. Guan - J. Spruck, Boundary value problem on Sn for surfaces of constant Gauss curvature, Annals of Math., Vol. 138 (1993), 601-624. Zbl0840.53046MR1247995
  34. [34] N.M. Ivochkina, Classical solvability of the Dirichlet problem for the Monge-Ampère equation, Zapiski Nauchn. Sem. LOMI AN SSSR, Vol. 131 (1983), 72-79 in Russian. English translation in J. Soviet Math. Vol. 30, No. 4 (1985), 2287-2292. Zbl0569.35014MR718679
  35. [35] N.M. Ivochkina, Solution of the Dirichlet problem for curvature equation of order m, Math. Sbornik, Vol. 180 No. 7 (1989), 867-887 in Russian. English translation in Math.USSR-Sb., Vol. 67, No. 2 (1990), 317-339. Zbl0709.35046MR1014618
  36. [36] N.M. Ivochkina, The Dirichlet problem for the equations of curvature of order m, English translation in Leningrad Math. J. Vol. 2 No. 3 (1991), 631-654. Zbl0732.35031MR1073214
  37. [37] B. Jensen, The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mach. Anal. Vol. 101 No. 1 (1988), 1-27. Zbl0708.35019MR920674
  38. [38] J.J. Kohn - L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure and Appl. Math. Vol. 20, No. 4 (1967), 797-872. Zbl0153.14503MR234118
  39. [39] N.J. Korevaar, A priori interior gradient bounds for solutions to elliptic Weingarten equations, Ann. Inst. Henri Poincaré, Analyse non lineaire, Vol. 4 No. 5 (1987), 405-421. Zbl0644.35041MR921546
  40. [40] N.V. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 46 No. 3 (1982), 487-523. English translation in Math. USSR Izvestija, Vol. 20 No. 3 (1983), 459-492. Zbl0529.35026MR661144
  41. [41] N.V. Krylov, Boundedly nonhomogeneous elliptic and parabolic equations in a domain, Izvestija Akad. Nauk SSSR, ser. mat., Vol. 47 No. 1 (1983), 75-108. English translation in Math. USSR Izvestija Vol. 22 No. 1 (1984), 67-97. Zbl0578.35024MR688919
  42. [42] N.V. Krylov, On degenerate nonlinear elliptic equations II, Matematicheski Sbornik, Vol. 121 No. 2 (1983), 211-232 in Russian. English translation in Math. USSR Sbornik Vol. 49 No. 1 (1984), 207-228. MR703325
  43. [43] N.V. Krylov, On estimates for the derivatives of solutions of nonlinear parabolic equations, Doklady Acad. Nauk SSSR, Vol. 274 No. 1 (1984), 23-26. English translation in Soviet Math. Dokl. Vol. 29 No. 1 (1984), 14-17. Zbl0598.35057MR730158
  44. [44] N.V. Krylov, "Nonlinear Elliptic and Parabolic Equations of Second Order", Nauka, Moscow, 1985 in Russian. English translation: Reidel, Dordrecht, 1987. Zbl0586.35002MR815513
  45. [45] N.V. Krylov, Some new results in the theory of nonlinear elliptic and parabolic equations, Proceed. of Intern. Congr. of Math., Berkeley Vol. 2 (1986), 1101-1109. Zbl0697.35043MR934313
  46. [46] N.V. Krylov, Smoothness of the value function for a controlled diffusion process in a domain, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 53 No. 1 (1989), 66-96 in Russian. English translation in Math. USSR Izvestija Vol. 34, No. 1 (1990), 65-96. Zbl0701.93054MR992979
  47. [47] N.V. Krylov, On first quasiderivatives of solutions of Itô's stochastic equations, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 56 No. 2 (1992), 398-426 in Russian. English translation in Math. USSR Izvestija Vol. 40 (1993). Zbl0778.60044MR1180379
  48. [48] N.V. Krylov, "Lectures on Fully Nonlinear Second Order Elliptic Equations", Vorlesungsreihe No. 29, Rheinische Friedrich-Wilhelms-Universität, Sonderforschungsbereich 256, Bonn, 1993, 85. 
  49. [49] N.V. Krylov, Interior first order derivative estimates for solutions of nonlinear degenerate elliptic equations with constant coefficients, Comm. in PDE, Vol. 18 No. 1-2 (1993), 1-40. Zbl0816.35038MR1211724
  50. [50] N.V. Krylov, On the general notion of fully nonlinear second order elliptic equation, Trans. Amer. Math. Soc. Vol. 347 No. 3, (1995), 857-895. Zbl0832.35042MR1284912
  51. [51] N.V. Krylov, A theorem on degenerate elliptic Bellman equations in bounded domains, Differential and Integr. Eq. Vol. 8 No. 5 (1995), 961-980. Zbl0880.35042MR1325541
  52. [52] N.V. Krylov - M.V. Safonov, An estimate of the probability that a diffusion process hits a set of positive measure, Doklady Acad. Nauk SSSR Vol. 245 No. 1 (1979), 18-20. English translation in Soviet Math. Dokl. Vol. 20 No. 2 (1979), 253-255. Zbl0459.60067MR525227
  53. [53] N.V. Krylov - M.V. Safonov, A certain property of solutions ofparabolic equations with measurable coefficients, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 44 No. 1 (1980), 161-175. English translation in Math. USSR Izvestija, Vol. 16, No. 1 (1981), 151-164. Zbl0464.35035MR563790
  54. [54] H.J. Kuo - N.S. Trudinger, Discrete methods for fully nonlinear elliptic equations, SIAM J. on Numer. Anal. Vol. 29 (1992), 123-135. Zbl0745.65058MR1149088
  55. [55] H.J. Kuo - N.S. Trudinger, On the discrete maximum principle for parabolic difference operators, Math. Modelling and Numer. Anal. Vol. 27 No. 6 (1993), 719-737. Zbl0787.65059MR1246996
  56. [56] H.J. Kushner - P.G. Dupuis, "Numerical Methods for Stochastic Control Problems in Continuous Time", Springer-Verlag, 1992. Zbl0754.65068MR1217486
  57. [57] N. Kutev, On the solvability of Monge-Ampère type equations in non-uniformly convex domains, Math. Z. Vol. 208 (1991), 167-176. Zbl0757.35022MR1128703
  58. [58] N. Kutev, On the solvability of Dirichlet's problem for a class of nonlinear elliptic and parabolic equations, International Conference on Differential Equations, Barselona, 26-31 August 1991, Eds: C. Perelló, C. Simó and J. Solà-Morales, World Scientific, Singapore- New Jersey-London-Hong Kong Vol. 2, 666-670. Zbl0938.35500MR1242316
  59. [59] H. Lewy, A priori limitations for solutions of Monge-Ampère equations I, II, Trans. Amer. Math. Soc. Vol. 37 (1935), 417-434; Vol. 42 (1937), 365-374. Zbl61.0513.02MR1501794JFM61.0513.02
  60. [60] G.M. Liberman - N.S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations, Trans. Amer. Math. Soc. Vol. 295 No. 2 (1986), 509-546. Zbl0619.35047MR833695
  61. [61] M. Lin - N.S. Trudinger, The Dirichlet Problem for the Prescribed Curvature Quotient Equations, preprint, 1994. Zbl0812.58016MR1281990
  62. [62] P.L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part III. Uniqueness of viscosity solutions of general second order equations, J. Funct. Anal. Vol. 86 (1989), 1-18. Zbl0757.93084MR1013931
  63. [63] P.L. Lions - N.S. Trudinger, Neumann problems for uniformly elliptic Bellman equations, Math. Z., Vol. 191 (1985), 1-15. Zbl0593.35046MR812598
  64. [64] P.L. Lions - N.S. Trudinger - J.I.E. Urbas, The Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math. Vol. 39 (1986), 539-563. Zbl0604.35027MR840340
  65. [65] H. Minkowski, Volumen und Oberfläche, Math. Ann. Vol. 57 (1903). MR1511220JFM34.0649.01
  66. [66] C. Miranda, Su un problema di Minkowski, Rend. Sem. Mat. Roma Vol. 3 (1939). Zbl0021.35701MR518JFM65.0828.01
  67. [67] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. Vol. 6 (1953). Zbl0051.12402MR58265
  68. [68] O.A. Oleinik - E.V. Radkevich, "Second Order Equations with Nonnegative Characteristic form", Itogi Nauki, Mat. Analiz1969, VINITI, Moscow, 1971 in Russian. English translation: Amer. Math. Soc., Plenum Press, Providence R.I., 1973. Zbl0217.41502MR457907
  69. [69] A.V. Pogorelov, Regularity of convex surfaces with prescribed Gaussian curvature, Matem. Sbornik Vol. 31, 1 (1952), 88-103 in Russian. Zbl0048.40501MR52807
  70. [70] A.V. Pocorelov, Monge-Ampère equations of elliptic type, Izd-vo Kharkovskogo Un-ta, Kharkov, 1960 in Russian. English translation: Noordhoff, Groningen, 1964. Zbl0133.04902MR180763
  71. [71] A.V. Pocorelov, The Dirichlet problem for the n-dimensional analogue of the Monge-Ampère equation, Dokl. Akad. Nauk SSSR Vol. 201 No. 4 (1971), 790-793 in Russian. English translation in Soviet Math. Dokl. Vol. 12 (1971), 1727-1731. Zbl0238.35071MR293228
  72. [72] A.V. Pogorelov, "The Minkowski Multidimensional Problem", Nauka, Moscow, 1975 in Russian. English translation: J. Wiley, New York, 1978. Zbl0387.53023MR478079
  73. [73] G. Pragarauskas, Uniqueness of the solution of the Bellman equation in the case of general controlled random processes, Lit. Mat. Sbornik Vol. 22 No. 2 (1982), 137-156 in Russian. English translation in Lithuanian Math. J. Vol. 22 No. 2 (1982), 160-168. Zbl0568.49010MR659026
  74. [74] G. Pragarauskas, Approximation of controlled solutions of Itô equations by controlled Markov chains, Lit. Mat. Sbornik Vol. 23 No. 1 (1983), 175-188 in Russian. English translation in Lithuanian Math. J. Vol. 23 No. 1 (1983), 98-108. Zbl0529.60082MR705739
  75. [75] M.V. Safonov, Harnack inequality for elliptic equations and the Hölder property of their solutions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) Vol. 96 (1980), 272-287 in Russian. English translation in J. Soviet Math. Vol. 21 No. 5 (1983), 851-863. Zbl0458.35028MR579490
  76. [76] M.V. Safonov, On the classical solution of Bellman's elliptic equations, Dokl. Akad. Nauk SSSR, Vol. 278 No. 4(1984), 810-813 in Russian. English translation in Soviet Math. Dokl. Vol. 30 No. 2 (1984), 482-485. Zbl0595.35011MR765302
  77. [77] M.V. Safonov, Unimprovability of estimates of Hölder constants for solutions of linear elliptic equations with measurable coefficients, Matem. Sbornik Vol. 132 No. 2 (1987), 275-288 in Russian. English translation in Math. USSR Sbornik Vol. 60 No. 1 (1988), 269-281. Zbl0656.35027MR882838
  78. [78] M.V. Safonov, On the classical solution ofnonlinear elliptic equations of second order, Izvestija Akad. Nauk SSSR, ser. mat. Vol. 137 No. 2 (1988), 184-201 in Russian. English translation in Math. USSR Izvestija Vol. 33 No. 3 (1989), 597-612. Zbl0682.35048MR984219
  79. [79] D. Tataru, Viscosity solutions for Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl. Vol. 163 (1992), 345-392. Zbl0757.35034MR1145836
  80. [80] D. Tataru, Viscosity solutions for the dynamic programming equations, Applied Math. and Optimiz. Vol. 25 (1992), 109-126. Zbl0760.49017MR1142677
  81. [81] N.S. Trudinger, Fully nonlinear, uniformly elliptic equations under natural structure conditions, Trans. Amer. Math. Soc. Vol. 278 No. 2 (1983), 751-769. Zbl0518.35036MR701522
  82. [82] N.S. Trudinger, Hölder gradient estimates for fully nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh, Sect. A Vol. 108 (1988), 57-65. Zbl0653.35026MR931007
  83. [83] N.S. Trudinger, On the twice differentiability of viscosity solutions of nonlinear elliptic equations, Bull. Austral. Math. Soc. Vol. 39 (1989), 443-447. Zbl0706.35031MR995142
  84. [84] N.S. Trudinger, The Dirichlet problem for the prescribed curvature equations, Arch. Rat. Mech. Anal. Vol. 111 No. 2 (1990), 153-179. Zbl0721.35018MR1057653
  85. [85] N.S. Trudinger, A priori bounds and necessary conditions for solvability ofprescribed curvature equations, Manuscripta Nath. Vol. 67 (1990), 99-112. Zbl0703.35070MR1037998
  86. [86] N.S. Trudinger - J.I.E. Urbas, The Dirichlet problem for the equation ofprescribed Gauss curvature, Bull. Aust. Math. Soc. Vol. 28 (1983), 217-231. Zbl0524.35047MR729009
  87. [87] N.S. Trudinger - J.I.E. Urbas, On second derivatives estimates for equations of Monge-Ampère type, Bull. Austral. Math. Soc. Vol. 30 (1984), 321-334. Zbl0557.35054MR766792
  88. [88] K. Tso, Deforming a hypersurface by its Gauss-Kroneker curvature, Comm. Pure and Appl. Math Vol. 38 (1985), 867-882. Zbl0612.53005MR812353
  89. [89] J.I.E. Urbas, " Elliptic Equations of Monge-Ampère Type", PhD thesis, Australian Nat. University, 1984. Zbl0557.35054
  90. [90] J.I.E. Urbas, Global Hölder estimates for equations of Monge-Ampère type, Invent. Math. Vol. 91 (1988), 1-29. Zbl0674.35026MR918234
  91. [91] J.I.E. Urbas, Regularity of generalized solutions of Monge-Ampère equations, Math. Zeit. Vol. 197 (1988), 365-393. Zbl0617.35017MR926846
  92. [92] J.I.E. Urbas, On the existence of nonclassical solutions for two classes offully nonlinear elliptic equations, Indiana Univ. Math. J. Vol. 39 No. 4 (1990), 355-382. Zbl0724.35028MR1089043
  93. [93] J.I.E. Urbas, On the expansion of starshaped hypersurfaces by symmetric functions of their principal curvatures, Math. Zeit. Vol. 205 (1990), 355-372. Zbl0691.35048MR1082861
  94. [94] J.I.E. Urbas, Regularity of almost extremal solutions of Monge-Ampère equations, Proc. Royal Soc. EdinburghA Vol. 117 (1991), 21-29. Zbl0735.35036MR1096216
  95. [95] J.I.E. Urbas, Boundary regularity for solutions of the equation of prescribed Gauss curvature, Ann. Inst. Henri Poincaré, Analyse non lineaire Vol. 8 No. 5 (1991), 499-522. Zbl0757.35024MR1136354
  96. [96] J.I.E. Urbas, An expansion of convex hypersurfaces, J. Diff. Geom. Vol. 33 (1991), 91-125; corrections to, ibid. Vol 35, 763-765. Zbl0746.53006MR1085136
  97. [97] J.I.E. Urbas, Nonlinear Oblique Boundary Value Problems for two Dimensional Curvature Equations, preprint. Zbl0853.35046
  98. [98] Wang Lihe, On the regularity theory offully nonlinear parabolic equations I-III, Comm. Pure Appl. Math. Vol. 45 (1992), 27-76, 141-178, 255-262. Zbl0794.35075MR1135923
  99. [99] Wang Rouhuai - Wang Guanglie, On existence, uniqueness and regularity of viscosity solutions for the first initial boundary value problems to parabolic Monge-Ampère equation, Northeastern Math. J. Vol. 8 No. 4 (1992), 417-446. Zbl0783.35028MR1210195
  100. [100] Wang Rouhuai - Wang Guanglie, The geometric measure theoretical characterization of viscosity solutions to parabolic Monge-Ampère type equation, J. Partial Diff. Eqs. Vol. 6 No. 3 (1993), 237-254. Zbl0811.35053MR1234574

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.