Euler characteristic Galerkin scheme with recovery

P. Lin; K. W. Morton; E. Süli

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1993)

  • Volume: 27, Issue: 7, page 863-894
  • ISSN: 0764-583X

How to cite

top

Lin, P., Morton, K. W., and Süli, E.. "Euler characteristic Galerkin scheme with recovery." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.7 (1993): 863-894. <http://eudml.org/doc/193727>.

@article{Lin1993,
author = {Lin, P., Morton, K. W., Süli, E.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element method; hyperbolic conservation law; Euler characteristic Galerkin scheme; transport-collapse operator; discontinuous linear recovery procedures; convergence},
language = {eng},
number = {7},
pages = {863-894},
publisher = {Dunod},
title = {Euler characteristic Galerkin scheme with recovery},
url = {http://eudml.org/doc/193727},
volume = {27},
year = {1993},
}

TY - JOUR
AU - Lin, P.
AU - Morton, K. W.
AU - Süli, E.
TI - Euler characteristic Galerkin scheme with recovery
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 7
SP - 863
EP - 894
LA - eng
KW - finite element method; hyperbolic conservation law; Euler characteristic Galerkin scheme; transport-collapse operator; discontinuous linear recovery procedures; convergence
UR - http://eudml.org/doc/193727
ER -

References

top
  1. [1] Y. BRENIER, 1984, Average multivalued solutions for scalar conservation laws, SIAM J. Numer. Anal., 21, 1013-1037. Zbl0565.65054MR765504
  2. [2] P. N. CHILDS, K. W. MORTON, 1990, Characteristic Galerkin methods for scalar conservation laws in one dimension, SIAM J. Numer. Anal., 27, 553-594. Zbl0728.65086MR1041252
  3. [3] R. COURANT, E. ISAACSON and M. REES, 1954On the solution of non-linear hyperbolic differential equations by finite differences, Comm. Pure Appl. Math., 5, 243-264. Zbl0047.11704MR53336
  4. [4] B. ENGQUIST and S. OSHER, 1981, One-sided difference approximations for nonlinear conservation laws, Mathematics of Camputation, 36, 321-352. Zbl0469.65067MR606500
  5. [5] S. K. GODUNOV, 1959, Finite - difference method for numerical computation of discontinuous solutions of the equations of gas dynamics, Mat. SB. (N.S.), 7, 271-290. Zbl0171.46204MR119433
  6. [6] J. B. GOODMAN and R. J. LEVEQUE, 1988, A geometrie approach to high resolution TVD schemes, SIAM J. Numer. Anal, 25, 268-284. Zbl0645.65051MR933724
  7. [7] P. LESAINT, 1977, Numerical solution of the equation of continuity. In J. J. H. Miller, éd., Topics in Numerical Analysis III, Academie Press, 199-222. Zbl0435.76010MR658144
  8. [8] K. W. MORTON, P. K. SWEBY, 1987, A comparison of flux-limited difference scheme and characteristic Galerkin methods for shock modelling, J. Comput, Phys., 73, 203-230. Zbl0632.76077
  9. [9] K. W. MORTON, 1983, Characteristic Galerkin methods for hyperbolicproblems, in Proc. on Numerical Methods in Fluid Mechanics, Gesellsehaft für Angewandte Mathematik und Machanik, Rome, M. Pandolfi and R. Riva, eds.,Vieweg, Wiesbaden, 243-250. Zbl0552.76005
  10. [10] K. W. MORTON, 1985, Generalized Galerkin methods for hyperbolic problems, Comput. Methods Appl, Mech. Engrg., 52, 847-871. Zbl0568.76007MR822763
  11. [11] K. W. MORTON, 1982, Shock capturing, fitting and recovery. In E. Krause, editor, Proceedings of the Eighth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 170, 77-93, Springer-Verlag. 
  12. [12] K. W. MORTON and A. STOKES, 1982, Generalised Galerkin methods for hyperbolic problems, in Proc. Conf. Mathematics of Finite Elements and Applications IV, J. R. Whiteman, éd., Academie Press, 421-431. Zbl0551.65076MR696783
  13. [13] I. NATANSON, 1955, Theory of Functions of a Real Variable, Vol. 1. Ungar, New York. Zbl0064.29102MR67952
  14. [14] S. OSHER and S. CHAKRAVARTHY, 1984, High resolution schemes and the entropy condition, SIAM J. Numer. Anal., 21, 955-984. Zbl0556.65074MR760626
  15. [15] P. L. ROE, 1981, Numerical algorithms for the linear wave equation, Royal Aircraft Establishment Technical Report 81047. 
  16. [16] J. SMOLLER, 1983, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York. Zbl0508.35002MR688146
  17. [17] P. K. SWEBY, 1984, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995-1011. Zbl0565.65048MR760628
  18. [18] B. VAN LEER, 1979, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method, J. Comp. Phys., 32, 101-136. Zbl0939.76063
  19. [19] A. VOLPERT, 1967, The spaces BV and quasilinear equations, Mat. Sb., 73, 255-302 ; English transl. in Math. USSR. Sb., 2, 225-267. Zbl0168.07402MR216338

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.