Euler characteristic Galerkin scheme with recovery
- Volume: 27, Issue: 7, page 863-894
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLin, P., Morton, K. W., and Süli, E.. "Euler characteristic Galerkin scheme with recovery." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 27.7 (1993): 863-894. <http://eudml.org/doc/193727>.
@article{Lin1993,
author = {Lin, P., Morton, K. W., Süli, E.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {finite element method; hyperbolic conservation law; Euler characteristic Galerkin scheme; transport-collapse operator; discontinuous linear recovery procedures; convergence},
language = {eng},
number = {7},
pages = {863-894},
publisher = {Dunod},
title = {Euler characteristic Galerkin scheme with recovery},
url = {http://eudml.org/doc/193727},
volume = {27},
year = {1993},
}
TY - JOUR
AU - Lin, P.
AU - Morton, K. W.
AU - Süli, E.
TI - Euler characteristic Galerkin scheme with recovery
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1993
PB - Dunod
VL - 27
IS - 7
SP - 863
EP - 894
LA - eng
KW - finite element method; hyperbolic conservation law; Euler characteristic Galerkin scheme; transport-collapse operator; discontinuous linear recovery procedures; convergence
UR - http://eudml.org/doc/193727
ER -
References
top- [1] Y. BRENIER, 1984, Average multivalued solutions for scalar conservation laws, SIAM J. Numer. Anal., 21, 1013-1037. Zbl0565.65054MR765504
- [2] P. N. CHILDS, K. W. MORTON, 1990, Characteristic Galerkin methods for scalar conservation laws in one dimension, SIAM J. Numer. Anal., 27, 553-594. Zbl0728.65086MR1041252
- [3] R. COURANT, E. ISAACSON and M. REES, 1954On the solution of non-linear hyperbolic differential equations by finite differences, Comm. Pure Appl. Math., 5, 243-264. Zbl0047.11704MR53336
- [4] B. ENGQUIST and S. OSHER, 1981, One-sided difference approximations for nonlinear conservation laws, Mathematics of Camputation, 36, 321-352. Zbl0469.65067MR606500
- [5] S. K. GODUNOV, 1959, Finite - difference method for numerical computation of discontinuous solutions of the equations of gas dynamics, Mat. SB. (N.S.), 7, 271-290. Zbl0171.46204MR119433
- [6] J. B. GOODMAN and R. J. LEVEQUE, 1988, A geometrie approach to high resolution TVD schemes, SIAM J. Numer. Anal, 25, 268-284. Zbl0645.65051MR933724
- [7] P. LESAINT, 1977, Numerical solution of the equation of continuity. In J. J. H. Miller, éd., Topics in Numerical Analysis III, Academie Press, 199-222. Zbl0435.76010MR658144
- [8] K. W. MORTON, P. K. SWEBY, 1987, A comparison of flux-limited difference scheme and characteristic Galerkin methods for shock modelling, J. Comput, Phys., 73, 203-230. Zbl0632.76077
- [9] K. W. MORTON, 1983, Characteristic Galerkin methods for hyperbolicproblems, in Proc. on Numerical Methods in Fluid Mechanics, Gesellsehaft für Angewandte Mathematik und Machanik, Rome, M. Pandolfi and R. Riva, eds.,Vieweg, Wiesbaden, 243-250. Zbl0552.76005
- [10] K. W. MORTON, 1985, Generalized Galerkin methods for hyperbolic problems, Comput. Methods Appl, Mech. Engrg., 52, 847-871. Zbl0568.76007MR822763
- [11] K. W. MORTON, 1982, Shock capturing, fitting and recovery. In E. Krause, editor, Proceedings of the Eighth International Conference on Numerical Methods in Fluid Dynamics, Lecture Notes in Physics, Vol. 170, 77-93, Springer-Verlag.
- [12] K. W. MORTON and A. STOKES, 1982, Generalised Galerkin methods for hyperbolic problems, in Proc. Conf. Mathematics of Finite Elements and Applications IV, J. R. Whiteman, éd., Academie Press, 421-431. Zbl0551.65076MR696783
- [13] I. NATANSON, 1955, Theory of Functions of a Real Variable, Vol. 1. Ungar, New York. Zbl0064.29102MR67952
- [14] S. OSHER and S. CHAKRAVARTHY, 1984, High resolution schemes and the entropy condition, SIAM J. Numer. Anal., 21, 955-984. Zbl0556.65074MR760626
- [15] P. L. ROE, 1981, Numerical algorithms for the linear wave equation, Royal Aircraft Establishment Technical Report 81047.
- [16] J. SMOLLER, 1983, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York. Zbl0508.35002MR688146
- [17] P. K. SWEBY, 1984, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 995-1011. Zbl0565.65048MR760628
- [18] B. VAN LEER, 1979, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method, J. Comp. Phys., 32, 101-136. Zbl0939.76063
- [19] A. VOLPERT, 1967, The spaces BV and quasilinear equations, Mat. Sb., 73, 255-302 ; English transl. in Math. USSR. Sb., 2, 225-267. Zbl0168.07402MR216338
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.