Approximation properties of periodic interpolation by translates of one function

F.-J. Delvos

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 2, page 177-188
  • ISSN: 0764-583X

How to cite

top

Delvos, F.-J.. "Approximation properties of periodic interpolation by translates of one function." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.2 (1994): 177-188. <http://eudml.org/doc/193735>.

@article{Delvos1994,
author = {Delvos, F.-J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {periodic splines; periodic interpolation},
language = {eng},
number = {2},
pages = {177-188},
publisher = {Dunod},
title = {Approximation properties of periodic interpolation by translates of one function},
url = {http://eudml.org/doc/193735},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Delvos, F.-J.
TI - Approximation properties of periodic interpolation by translates of one function
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 2
SP - 177
EP - 188
LA - eng
KW - periodic splines; periodic interpolation
UR - http://eudml.org/doc/193735
ER -

References

top
  1. [1] E. W. CHENEY, 1992, Approximation by functions of nonclassical form. In Approximation Theory, Spline Functions and Applications, edited by S. P. Singh, NATO ASI Series C, 356, 1-18. Zbl0751.41001MR1165960
  2. [2] F.-J. DELVOS, 1985, Interpolation of odd periodic functions on uniform meshes. In Delay Equations, Approximation, and Applications (Eds. G. Meinardus, G. Nürnberger), ISNM 74, Birkhäuser Verlag, Basel. Zbl0578.41012MR899092
  3. [3] F.-J. DELVOS, 1987, Periodic interpolation on uniform meshes, Journal of Approximation Theory, 39, 71-80. Zbl0664.41004MR906762
  4. [4] F.-J. DELVOS, 1985, Convergence of interpolation on by translation, In Alfred Haar Mémorial Volume, Colloquia Mathematica Societatis Janos Bolyai, 49 273-287. Zbl0638.42003MR899538
  5. [5] M. GOLOMB, 1968, Approximation by periodic spline interpolation on uniform meshes, Journal of Approximation Theory, 1, 26-65. Zbl0185.30901MR233121
  6. [6] Y. KATZNELSON, 1976, An introduction to harmonic analysis, Dover, New York. Zbl0352.43001MR422992
  7. [7] P.-J. LAURENT, 1972, Approximation et optimisation. Hermann, Paris. Zbl0238.90058MR467080
  8. [8] F. LOCHER, 1981, Interpolation on uniform meshes by translates of one function and related attenuation factors, Mathematics of Computation, 37, 403-416. Zbl0517.42004MR628704
  9. [9] W. QUADE and L. COLLATZ, 1938, Zur Interpolationstheorie der reellen periodischen Funktionen, Preuβische Akademie der Wissenschaften (Math. Phys. Klasse), 30, 383-429. Zbl65.0543.01JFM65.0543.01
  10. [10] G. TOLSTOW, 1976, Fourier Series, Dover, New York. 

NotesEmbed ?

top

You must be logged in to post comments.