Approximation properties of periodic interpolation by translates of one function

F.-J. Delvos

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 2, page 177-188
  • ISSN: 0764-583X

How to cite

top

Delvos, F.-J.. "Approximation properties of periodic interpolation by translates of one function." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.2 (1994): 177-188. <http://eudml.org/doc/193735>.

@article{Delvos1994,
author = {Delvos, F.-J.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {periodic splines; periodic interpolation},
language = {eng},
number = {2},
pages = {177-188},
publisher = {Dunod},
title = {Approximation properties of periodic interpolation by translates of one function},
url = {http://eudml.org/doc/193735},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Delvos, F.-J.
TI - Approximation properties of periodic interpolation by translates of one function
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 2
SP - 177
EP - 188
LA - eng
KW - periodic splines; periodic interpolation
UR - http://eudml.org/doc/193735
ER -

References

top
  1. [1] E. W. CHENEY, 1992, Approximation by functions of nonclassical form. In Approximation Theory, Spline Functions and Applications, edited by S. P. Singh, NATO ASI Series C, 356, 1-18. Zbl0751.41001MR1165960
  2. [2] F.-J. DELVOS, 1985, Interpolation of odd periodic functions on uniform meshes. In Delay Equations, Approximation, and Applications (Eds. G. Meinardus, G. Nürnberger), ISNM 74, Birkhäuser Verlag, Basel. Zbl0578.41012MR899092
  3. [3] F.-J. DELVOS, 1987, Periodic interpolation on uniform meshes, Journal of Approximation Theory, 39, 71-80. Zbl0664.41004MR906762
  4. [4] F.-J. DELVOS, 1985, Convergence of interpolation on by translation, In Alfred Haar Mémorial Volume, Colloquia Mathematica Societatis Janos Bolyai, 49 273-287. Zbl0638.42003MR899538
  5. [5] M. GOLOMB, 1968, Approximation by periodic spline interpolation on uniform meshes, Journal of Approximation Theory, 1, 26-65. Zbl0185.30901MR233121
  6. [6] Y. KATZNELSON, 1976, An introduction to harmonic analysis, Dover, New York. Zbl0352.43001MR422992
  7. [7] P.-J. LAURENT, 1972, Approximation et optimisation. Hermann, Paris. Zbl0238.90058MR467080
  8. [8] F. LOCHER, 1981, Interpolation on uniform meshes by translates of one function and related attenuation factors, Mathematics of Computation, 37, 403-416. Zbl0517.42004MR628704
  9. [9] W. QUADE and L. COLLATZ, 1938, Zur Interpolationstheorie der reellen periodischen Funktionen, Preuβische Akademie der Wissenschaften (Math. Phys. Klasse), 30, 383-429. Zbl65.0543.01JFM65.0543.01
  10. [10] G. TOLSTOW, 1976, Fourier Series, Dover, New York. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.