Approximation properties of periodic interpolation by translates of one function
- Volume: 28, Issue: 2, page 177-188
- ISSN: 0764-583X
Access Full Article
topHow to cite
topReferences
top- [1] E. W. CHENEY, 1992, Approximation by functions of nonclassical form. In Approximation Theory, Spline Functions and Applications, edited by S. P. Singh, NATO ASI Series C, 356, 1-18. Zbl0751.41001MR1165960
- [2] F.-J. DELVOS, 1985, Interpolation of odd periodic functions on uniform meshes. In Delay Equations, Approximation, and Applications (Eds. G. Meinardus, G. Nürnberger), ISNM 74, Birkhäuser Verlag, Basel. Zbl0578.41012MR899092
- [3] F.-J. DELVOS, 1987, Periodic interpolation on uniform meshes, Journal of Approximation Theory, 39, 71-80. Zbl0664.41004MR906762
- [4] F.-J. DELVOS, 1985, Convergence of interpolation on by translation, In Alfred Haar Mémorial Volume, Colloquia Mathematica Societatis Janos Bolyai, 49 273-287. Zbl0638.42003MR899538
- [5] M. GOLOMB, 1968, Approximation by periodic spline interpolation on uniform meshes, Journal of Approximation Theory, 1, 26-65. Zbl0185.30901MR233121
- [6] Y. KATZNELSON, 1976, An introduction to harmonic analysis, Dover, New York. Zbl0352.43001MR422992
- [7] P.-J. LAURENT, 1972, Approximation et optimisation. Hermann, Paris. Zbl0238.90058MR467080
- [8] F. LOCHER, 1981, Interpolation on uniform meshes by translates of one function and related attenuation factors, Mathematics of Computation, 37, 403-416. Zbl0517.42004MR628704
- [9] W. QUADE and L. COLLATZ, 1938, Zur Interpolationstheorie der reellen periodischen Funktionen, Preuβische Akademie der Wissenschaften (Math. Phys. Klasse), 30, 383-429. Zbl65.0543.01JFM65.0543.01
- [10] G. TOLSTOW, 1976, Fourier Series, Dover, New York.