A Class of Multidimensional Periodic Splines.
Page 1 Next
Willi Freeden, Richard Reuter (1981)
Manuscripta mathematica
Jiang, Tianzi (2000)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Anry Nersessian, Arnak Poghosyan (2006)
Open Mathematics
A nonlinear method of accelerating both the convergence of Fourier series and trigonometric interpolation is investigated. Asymptotic estimates of errors are derived for smooth functions. Numerical results are represented and discussed.
A. Sharma, R.B. Saxena (1991)
Aequationes mathematicae
Y. Maday, A. Quarteroni, C. Canuto (1982)
Numerische Mathematik
F.-J. Delvos (1994)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Richard Haverkamp (1982)
Mathematische Zeitschrift
Martin H. Gutknecht (1987)
Numerische Mathematik
A. Sharma, M.A. Botto (1977)
Aequationes mathematicae
A. Sharma, M.A. Botto (1976)
Aequationes mathematicae
Jean-Paul Berrut (1989)
Numerische Mathematik
P. Henrici (1979)
Numerische Mathematik
Yurii I. Lyubarskii, Kristian Seip (1997)
Revista Matemática Iberoamericana
We describe the complete interpolating sequences for the Paley-Wiener spaces Lπp (1 < p < ∞) in terms of Muckenhoupt's (Ap) condition. For p = 2, this description coincides with those given by Pavlov [9], Nikol'skii [8] and Minkin [7] of the unconditional bases of complex exponentials in L2(-π,π). While the techniques of these authors are linked to the Hilbert space geometry of Lπ2, our method of proof is based in turning the problem into one about boundedness of the Hilbert transform...
A. K. Varma (1973)
Annales Polonici Mathematici
R. KRESS (1970/1971)
Numerische Mathematik
Z. Ciesielski, J. Domsta (1972)
Studia Mathematica
Kathryn E. Hare, L. Thomas Ramsey (2013)
Colloquium Mathematicae
A set S of integers is called ε-Kronecker if every function on S of modulus one can be approximated uniformly to within ε by a character. The least such ε is called the ε-Kronecker constant, κ(S). The angular Kronecker constant is the unique real number α(S) ∈ [0,1/2] such that κ(S) = |exp(2πiα(S)) - 1|. We show that for integers m > 1 and d ≥ 1, and α1,m,m²,... = 1/(2m).
Klaus Hallatschek (1992)
Numerische Mathematik
Max Jodeit, Alberto Torchinsky (1971)
Studia Mathematica
M. Déchamps-Gondim (1973)
Colloquium Mathematicae
Page 1 Next