Stochastic homogenization of nonconvex integral functionals
- Volume: 28, Issue: 3, page 329-356
- ISSN: 0764-583X
Access Full Article
topHow to cite
topMessaoudi, K., and Michaille, G.. "Stochastic homogenization of nonconvex integral functionals." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.3 (1994): 329-356. <http://eudml.org/doc/193742>.
@article{Messaoudi1994,
author = {Messaoudi, K., Michaille, G.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {almost sure epiconvergence; random integral functionals; asymptotic behaviour},
language = {eng},
number = {3},
pages = {329-356},
publisher = {Dunod},
title = {Stochastic homogenization of nonconvex integral functionals},
url = {http://eudml.org/doc/193742},
volume = {28},
year = {1994},
}
TY - JOUR
AU - Messaoudi, K.
AU - Michaille, G.
TI - Stochastic homogenization of nonconvex integral functionals
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 3
SP - 329
EP - 356
LA - eng
KW - almost sure epiconvergence; random integral functionals; asymptotic behaviour
UR - http://eudml.org/doc/193742
ER -
References
top- [1] M. A. ACKOGLU and U. KRENGEL, 1981, Ergodic theorem for superadditive processes, J. Reine angew. Math., 323,53-67. Zbl0453.60039MR611442
- [2] H. ATTOUCH, 1984, Variational Convergence for functions and operators, Research Notes in Mathematics, Pitman, London. Zbl0561.49012MR773850
- [3] H. ATTOUCH, D. AZE and R. WETS, 1988, Convergence of convex concave saddle functions : applications to convex programming and mecanics, Ann. Inst. H. Poincaré, 5, n° 6, 537-572. Zbl0667.49009MR978671
- [4] J. P. AUBIN and H. FRANKOVSKA, 1990, Set Valued Analysis, Birkhäuser. Zbl0713.49021MR1048347
- [5] J. M. BALL and F. MURAT, 1984, Wl,P-Quasiconvexity and Variational Problems for Multiple Integrals, Journal of Functional Analysis, 58, 222-253. Zbl0549.46019MR759098
- [6] N. BOULEAU, 1988, Processus Aléatoires et Applications, Hermann.
- [7] A. BRAIDES, 1985, Homogenization for some almost periodic coercive functionals, Rend. acad. naz., XL 103, 313-322. Zbl0582.49014MR899255
- [8] C. CASTAING and M. VALADIER, 1977, Convex Analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer. Zbl0346.46038MR467310
- [9] B. DACOROGNA, 1989, Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, Springer. Zbl0703.49001MR990890
- [10] G. DAL MASO and L. MODICA, A general Theory of Variational Functionals, In F. STROCCHI et al., Topics in Functional Analysis 1980-1981, Scuola Normale Superiore, Pisa, 149-221. Zbl0493.49005MR671757
- [11] 1985, Non Linear Stochastic Homogenization, Ann. Mat. Pura Appl, 346-389. Zbl0607.49010
- [12] 1986, Non Linear Stochastic Homogenization and Ergodic Theory, J. Reine angew. Math., 363, 27-42. Zbl0582.60034
- [13] I. EKELAND and R. TEMAM, 1978, Convex analysis and variational problems, North-Holland. Zbl0322.90046MR569206
- [14] C. B. Jr. MORREY, 1952, Quasi-convexity and the semicontinuity of multiple integrals, Pacific J. Math., 2, 25-53. Zbl0046.10803MR54865
- [15] S. MÜLLER, 1987, Homogenization of Non Convex Integral Functionals and Cellular Elastic Material, Arch. Rat. Mec., 189-212. Zbl0629.73009MR888450
- [16] K. SAB, 1989, Sur quelques méthodes en mécaniques aléatoire, thèse de l'E.N.P.C.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.