Convergence of convex-concave saddle functions : applications to convex programming and mechanics

Dominique Azé; Hedy Attouch; Roger J.-B. Wets

Annales de l'I.H.P. Analyse non linéaire (1988)

  • Volume: 5, Issue: 6, page 537-572
  • ISSN: 0294-1449

How to cite

top

Azé, Dominique, Attouch, Hedy, and Wets, Roger J.-B.. "Convergence of convex-concave saddle functions : applications to convex programming and mechanics." Annales de l'I.H.P. Analyse non linéaire 5.6 (1988): 537-572. <http://eudml.org/doc/78164>.

@article{Azé1988,
author = {Azé, Dominique, Attouch, Hedy, Wets, Roger J.-B.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {epi-convergence; bicontinuity; stability; multipliers of convex programs; elasticity},
language = {eng},
number = {6},
pages = {537-572},
publisher = {Gauthier-Villars},
title = {Convergence of convex-concave saddle functions : applications to convex programming and mechanics},
url = {http://eudml.org/doc/78164},
volume = {5},
year = {1988},
}

TY - JOUR
AU - Azé, Dominique
AU - Attouch, Hedy
AU - Wets, Roger J.-B.
TI - Convergence of convex-concave saddle functions : applications to convex programming and mechanics
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1988
PB - Gauthier-Villars
VL - 5
IS - 6
SP - 537
EP - 572
LA - eng
KW - epi-convergence; bicontinuity; stability; multipliers of convex programs; elasticity
UR - http://eudml.org/doc/78164
ER -

References

top
  1. [1] R. Wijsman, Convergence of Sequences of Convex Sets, Cones and Functions II, Trans. Amer. Math. Soc., Vol. 123, 1966, pp. 32-45. Zbl0146.18204MR196599
  2. [2] U. Mosco, Convergence of Convex Sets and Solutions of Variational Inequalities, Advances Math., Vol. 3, 1969, pp. 510-585. Zbl0192.49101MR298508
  3. [3] E. De Giorgi, Convergence Problems for Functionals and Operators, Proceed. on Recent Methods in Non-linear Analysis, E. DE GIORGI, E. MAGENES and U. Mosco Eds., Pitagora Editrice, Bologna, 1980. 
  4. [4] H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman, London, 1984. Zbl0561.49012MR773850
  5. [5] U. Mosco, On the Continuity of the Young-Fenchel Transform, J. Math. Anal. Appl., Vol. 35, 1971, pp. 518-535. Zbl0253.46086MR283586
  6. [6] J.-L. Joly, Une famille de topologies sur l'ensemble des fonctions convexes pour lesquelles la polarité est bicontinue, J. Math. Pures Appl., Vol. 52, 1973, pp. 421-441. Zbl0282.46005MR500129
  7. [7] K. Back, Continuity of the Fenchel Transform of Convex Functions, Proceedings of the American Mathematical Society, Vol. 97, 1986, pp. 661-667. Zbl0605.46011MR845984
  8. [8] R.T. Rockafellar, A General Correspondence Between Dual Minimax Problems and Convex Programs, Pacific J. Math., Vol. 25, 1968, pp. 597-611. Zbl0162.23103MR230548
  9. [9] I. Ekeland and R. Teman, Convex Analysis and Variational Problems, North Holland, Amsterdam, 1978. 
  10. [10] H. Attouch and R. Wets, A Convergence Theory for Saddle Functions, Trans. Amer. Math. Soc., Vol. 280, 1983, pp. 1-44. Zbl0525.49009MR712247
  11. [11] H. Attouch and R. Wets, A Convergence for Bivariate functions aimed at the Convergence of Saddle Values, in Mathematical Theories of Optimization, J. CECCONI and T. ZOLEZZI Eds., Springer-Verlag Lecture Notes in Mathematics, No. 979, 1981, pp. 1-42. Zbl0516.49009MR713803
  12. [12] E. Cavazutti, Alcune caratterizzazioni della Γ-convergenza multipla, Annali Mat. Pura Applicata, Vol. 32, 1982, pp. 69-112. 
  13. [13] E. Cavazutti, Γ-convergenza multipla, convergenza di punti di sella e di max-min, Boll. Un. Mat. Ital., (6), Vol. 1-B, 1982, pp. 251-274. 
  14. [14] G. Greco, Saddle Topology and Min-Max Theorems, Tech. Report. Univ. Trento., 1984. 
  15. [15] Y. Sonntag, Convergence au sens de Mosco; théorie et applications à l'approximation des solutions d'inéquations, Thèse d'État, Marseille, 1982. 
  16. [16] A. Fougeres and A. Truffert, Régularisation s.c.i. et Γ-convergence, approximations inf-convolutives associées à un référentiel, Annali di Mat. Pura e appl., 1986 (to appear). Zbl0662.49005
  17. [17] R.T. Rockafellar, Monotone operators Associated with Saddle Functions and Minimax Problems, in NonlinearFunctional Analysis, American Mathematical Society, Rhode Island, 1970. Zbl0237.47030MR285942
  18. [18] R.T. Rockafellar, Minimax Theorems and Conjugate Saddle Functions, Matematica Scandinavica, Vol. 14, 1964, pp. 151-173. Zbl0127.28309MR175037
  19. [19] L. Mclinden, An Extension of Fenchel Duality Theorem to Saddle Functions and Dual Minimax Problems, Pacific J. Mathematics, Vol. 50, 1974, pp. 135-158. Zbl0245.90032MR373610
  20. [20] L. Mclinden, Dual Operations on Saddle Functions, Trans. Amer. Math. Soc., Vol. 179, 1973, pp. 363-381. Zbl0275.90032MR316097
  21. [21] J.-P. Aubin, L'Analyse Non Linéaire et ses Motivations Économiques, Masson, 1984. Zbl0551.90001MR754997
  22. [22] R.T. Rockafellar, Conjugate Duality and Optimization, Regional Conference Series in Applied Mathematics, 16, S.I.A.M., Philadelphia, 1974. Zbl0296.90036MR373611
  23. [23] S. Robinson, Local Structure of Feasible Sets in Nonlinear Programming, part III: Stability and Sensitivity, Mathematical Programming Study, Vol. 22, 1984, pp. 217-230. Zbl0629.90079MR774244
  24. [24] A. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, New York, 1983. Zbl0543.90075MR721641
  25. [25] L. Mclinden and R. Bergstrom, Preservation of Convergence of Convex Sets and Functions in Finite Dimensions, Trans. Amer. Math. Soc., Vol. 268, 1981. Zbl0468.90063MR628449
  26. [26] J.-J. Moreau, Fonctionnelles convexes, séminaire équations aux dérivées partielles, Collège de France, Paris, 1966. 
  27. [27] J.-L. Joly, Une famille de topologies et de convergences sur l'ensemble des fonctionnelles convexes, Thèse d'état, Grenoble, 1970. 
  28. [28] J.-P. Aubin, Mathematical Methods of Game and Economic Theory, North Holland, 1979. Zbl0452.90093MR556865
  29. [29] T. Zolezzi, On Stability Analysis in Mathematical Programming, Mathematical Programming study, Vol. 21, 1984, pp. 227-242. MR751252
  30. [30] L. Mclinden, Successive Approximation and Linear Stability Involving Convergent Sequences of Optimization Problems, J. Approximation Theory, Vol. 35, 1982, pp. 311-354. Zbl0496.49009MR665986
  31. [31] R. Lucchetti and F. Patrone, Closure and Upper Semicontinuity in Mathematical Programming, Nash and economic equilibria, Tech. Report, Univ. Genova, 1984. Zbl0616.90054
  32. [32] D. Azé, Stability Results in Convex Programming, Technical Report 85-04, A.V.A.M.A.C., Perpignan, 1985. 
  33. [33] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam, 1978. Zbl0404.35001MR503330
  34. [34] L. Tartar, Cours Peccot au collège de France, Paris, 1977. 
  35. [35] E. De Giorgi and T. Franzoni, Su un tipo di convergenza variationale, Atti. Accad. Naz. Lincei, Rend. de sc. Mat., (8), Vol. 58, 1975, pp. 842-850. Zbl0339.49005MR448194
  36. [36] P. Marcellini, Periodic Solutions and Homogenization of Non Linear Variational Problems, Ann. Mat. Pura Appl., Vol. 117, 1978, pp. 139-159. Zbl0395.49007MR515958
  37. [37] A.V. Marchenko and E. Ya Hruslov, Boundary value problems in domains with close-grained Boundaries (Russian), Naukova Dumka, Kiev, 1974. 
  38. [38] H. Attouch, Variational Properties of Epi-Convergence, in Multifunctions and Integrands : Stochastic Analysis, Approximation and Optimization, G. SALINETTI Ed.; Springer-Verlag Lecture Notes in Mathematics, No. 1091, 1983. 
  39. [39] P. Suquet, Plasticité et homogénéisation, Thèse d'état, Paris-VI, 1982. 
  40. [40] D. Azé, Epi-convergence et dualité, applications à la convergence des variables duales pour des suites de problèmes d'optimisation convexe, Technical Report 84-12, A.V.A.M.A.C. Perpignan, 1984. 
  41. [41] G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Dunod, 1972. Zbl0298.73001MR464857
  42. [42] A. Auslender, Optimisation: Méthodes numériques, Masson, 1976. Zbl0326.90057MR441204
  43. [43] D. Azé, Convergence des variables duales dans des problèmes de transmission à travers des couches minces par des méthodes d'épi-convergence, Ricerche di Matematica, vol. 35, 1986, pp. 125-159. Zbl0611.49006MR889865
  44. [44] H. Attouch, On the Maximality of the Sum of Two Maximal Monotone Operators, Nonlinear Analysis, Theory, Methods and Applications, Vol. 5, No. 2, 1981, pp. 143-147. Zbl0452.47059MR606695
  45. [45] F. Murat, H-Convergence, Rapport du séminaire d'analyse fonctionnelle et numérique, Université d'Alger, 1978. 
  46. [46] H. Attouch, Convergence de fonctionnelles convexes, Proc. journées d'analyse non linéaire, Besançon, 1977; Springer-Verlag Lecture Notes in Mathematics, No. 655, 1978, pp. 1-40. Zbl0406.46035MR519420
  47. [47] H. Attouch and R. Wets, Approximation and Convergence in Nonlinear Optimization, Nonlinear Programming, Vol. 4, 1981, pp. 367-394. MR663386
  48. [47] E. Sanchez-Palencia, Nonhomogenous Media and Vibration Theory, Springer-Verlag Lecture Notes in Physics, No. 127, 1980. Zbl0432.70002MR578345
  49. [48] R.T. Rockafellar, First and Second-Order Epi-Differentiability in Nonlinear Programming, Transaction American Mathematical Society, 1988, forthcoming. Zbl0655.49010MR936806

Citations in EuDML Documents

top
  1. Hedy Attouch, Paul-Émile Maingé, Asymptotic behavior of second-order dissipative evolution equations combining potential with non-potential effects
  2. Hedy Attouch, Paul-Émile Maingé, Asymptotic behavior of second-order dissipative evolution equations combining potential with non-potential effects
  3. K. Messaoudi, G. Michaille, Stochastic homogenization of nonconvex integral functionals
  4. Driss Mentagui, Analyse de récession et résultats de stabilité d’une convergence variationnelle, application à la théorie de la dualité en programmation mathématique
  5. Khalid El Hajioui, Driss Mentagui, Slice convergence : stabilité et optimisation dans les espaces non réflexifs
  6. Driss Mentagui, Analyse de récession et résultats de stabilité d'une convergence variationnelle, application à la théorie de la dualité en programmation mathématique
  7. Khalid El Hajioui, Driss Mentagui, Slice convergence: stabilité et optimisation dans les espaces non réflexifs

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.