A variational method for electromagnetic diffraction in biperiodic structures

D. C. Dobson

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 4, page 419-439
  • ISSN: 0764-583X

How to cite

top

Dobson, D. C.. "A variational method for electromagnetic diffraction in biperiodic structures." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.4 (1994): 419-439. <http://eudml.org/doc/193746>.

@article{Dobson1994,
author = {Dobson, D. C.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {variational method; electromagnetic diffraction; biperiodic structures; time-harmonic electromagnetic plane wave; numerical experiment},
language = {eng},
number = {4},
pages = {419-439},
publisher = {Dunod},
title = {A variational method for electromagnetic diffraction in biperiodic structures},
url = {http://eudml.org/doc/193746},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Dobson, D. C.
TI - A variational method for electromagnetic diffraction in biperiodic structures
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 4
SP - 419
EP - 439
LA - eng
KW - variational method; electromagnetic diffraction; biperiodic structures; time-harmonic electromagnetic plane wave; numerical experiment
UR - http://eudml.org/doc/193746
ER -

References

top
  1. [1] T. ABBOUD, J. NÉDÉLEC, 1992, Electromagnetic waves in an inhomogeneous medium, J, Math. Anal. Appl, 164, 40-58. Zbl0755.35134MR1146575
  2. [2] A. BENDALI, 1984, Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. Part 1 : The continuous problem., Math. of Computation, 167, 29-46. Zbl0555.65082MR744923
  3. [2] A. BENDALI, 1984, Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. Part 2 : The discrete problem, Math. of Computation, 167, 47-68. Zbl0555.65083MR744924
  4. [3] H. BELLOUT, A. FRIEDMAN, 1990, Scattering by stripe grating, J. Math. Anal. Appl., 147, 228-248. Zbl0716.35061MR1044697
  5. [4] M. BORN, E. WOLF, 1980, Principles of Optics, sixth edition, Pergamon Press, Oxford. 
  6. [5] O. P. BRUNO, F. REITICH, 1992, Solution of a boundary value problem for elmholtz equation via variation of the boundary into the complex domain, Proc. Royal Soc. Edinburgh, 122A, 317-340. Zbl0789.35042MR1200203
  7. [6] O. P. BRUNO, F. REITICH, 1993, Numerical solution of diffraction problems : a method of variation of boundaries, J. Opt. Soc. America A, 10, 1168-1175. 
  8. [7] O. P. BRUNO, F. REITICH, Numerical solution of diffraction problems : a method of variation of boundaries II. Dielectric gratings, Padé approximants and singularities ; III. Doubly periodic gratings, preprints. MR1817674
  9. [8] X. CHEN, A. FRIEDMAN, 1991, Maxwell's equations in a periodic structure, Trans. Amer. Math. Soc, 323, 465-507. Zbl0727.35131MR1010883
  10. [9] J. A. COX, D. DOBSON, 1991, An integral equation method for biperiodic diffraction structures, in J. Lerner and W. McKinney, ed., International Conference on the Application and Theory of Periodic Structures, Proc. SPIE 1545, 106-113. 
  11. [10] D. DOBSON, A. FRIEDMAN, 1992, The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl., 166, 507-528. Zbl0759.35046MR1160941
  12. [11] B. DUCOMET, D. Ha. QUANG, 1992, Diffusion électromagnétique à basse fréquence par un réseau de cylindres diélectriques : étude numérique, RAIRO, Modél. Math. Anal. Numér. 26, 709-738. Zbl0754.65103MR1183414
  13. [12] A. FRIEDMAN, 1990, Mathematics in Industrial Problems, Part 3, Springer-Verlag, Heidelberg. Zbl0731.00006MR1074003
  14. [13] D. GILBARG, N. S. TRUDINGER, 1977, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Heidelberg. Zbl0361.35003MR473443
  15. [14] T. KATO, 1980, Perturbation Theory for Linear Operators (corrected second édition), Springer-Verlag, Berlin. Zbl0435.47001MR407617
  16. [15] J. C. NÉDÉLEC, F. STARLING, 1988, Integral equation methods in quasi-periodic diffraction problems for the time-harmonic Maxwell's equations, in « Rapport Interne », Vol. 179, C.M.A.P., Ecole Polytechnique, Palaiseau. Zbl0756.35004
  17. [16] Electromagnetic Theory of Gratings, 1980, Topics in Current Physics, Vol. 22, edited by R. Petit, Springer-Verlag, Heidelberg. MR609533
  18. [17] M TAYLOR, 1981, Pseudodifferential Operators, Princeton University Press, Princeton, N. J. Zbl0453.47026MR618463

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.