On uniqueness in electromagnetic scattering from biperiodic structures

Armin Lechleiter; Dinh-Liem Nguyen

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2013)

  • Volume: 47, Issue: 4, page 1167-1184
  • ISSN: 0764-583X

Abstract

top
Consider time-harmonic electromagnetic wave scattering from a biperiodic dielectric structure mounted on a perfectly conducting plate in three dimensions. Given that uniqueness of solution holds, existence of solution follows from a well-known Fredholm framework for the variational formulation of the problem in a suitable Sobolev space. In this paper, we derive a Rellich identity for a solution to this variational problem under suitable smoothness conditions on the material parameter. Under additional non-trapping assumptions on the material parameter, this identity allows us to establish uniqueness of solution for all positive wave numbers.

How to cite

top

Lechleiter, Armin, and Nguyen, Dinh-Liem. "On uniqueness in electromagnetic scattering from biperiodic structures." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 47.4 (2013): 1167-1184. <http://eudml.org/doc/273267>.

@article{Lechleiter2013,
abstract = {Consider time-harmonic electromagnetic wave scattering from a biperiodic dielectric structure mounted on a perfectly conducting plate in three dimensions. Given that uniqueness of solution holds, existence of solution follows from a well-known Fredholm framework for the variational formulation of the problem in a suitable Sobolev space. In this paper, we derive a Rellich identity for a solution to this variational problem under suitable smoothness conditions on the material parameter. Under additional non-trapping assumptions on the material parameter, this identity allows us to establish uniqueness of solution for all positive wave numbers.},
author = {Lechleiter, Armin, Nguyen, Dinh-Liem},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {biperiodic scattering; uniqueness; electromagnetic waves; electromagnetic scattering; biperiodic dielectric structure, variational formulation; Rellich identity},
language = {eng},
number = {4},
pages = {1167-1184},
publisher = {EDP-Sciences},
title = {On uniqueness in electromagnetic scattering from biperiodic structures},
url = {http://eudml.org/doc/273267},
volume = {47},
year = {2013},
}

TY - JOUR
AU - Lechleiter, Armin
AU - Nguyen, Dinh-Liem
TI - On uniqueness in electromagnetic scattering from biperiodic structures
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2013
PB - EDP-Sciences
VL - 47
IS - 4
SP - 1167
EP - 1184
AB - Consider time-harmonic electromagnetic wave scattering from a biperiodic dielectric structure mounted on a perfectly conducting plate in three dimensions. Given that uniqueness of solution holds, existence of solution follows from a well-known Fredholm framework for the variational formulation of the problem in a suitable Sobolev space. In this paper, we derive a Rellich identity for a solution to this variational problem under suitable smoothness conditions on the material parameter. Under additional non-trapping assumptions on the material parameter, this identity allows us to establish uniqueness of solution for all positive wave numbers.
LA - eng
KW - biperiodic scattering; uniqueness; electromagnetic waves; electromagnetic scattering; biperiodic dielectric structure, variational formulation; Rellich identity
UR - http://eudml.org/doc/273267
ER -

References

top
  1. [1] T. Abboud, Electromagnetic waves in periodic media, in Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, Newark, DE. SIAM, Philadelphia (1993) 1–9. Zbl0815.35106MR1227824
  2. [2] H. Alber, A quasi-periodic boundary value problem for the laplacian and the continuation of its resolvent. Proc. Royal Soc. Edinburgh82 (1979) 251–272. Zbl0402.35033MR532908
  3. [3] T. Arens, Scattering by biperiodic layered media: The integral equation approach.Habilitation Thesis, Universität Karlsruhe (2010). 
  4. [4] G. Bao, Variational approximation of Maxwell’s equations in biperiodic structures. SIAM J. Appl. Math.57 (1997) 364–381. Zbl0872.65108MR1438758
  5. [5] G. Bao, L. Cowsar and W. Masters, Mathematical modeling in optical science. SIAM Frontiers Appl. Math. SIAM, Philadelphia (2001). Zbl0964.00050MR1831328
  6. [6] G. Bao and D.C. Dobson, On the scattering by a biperiodic structure. Proc. Amer. Math. Soc.128 (2000) 2715–2723. Zbl1025.78007MR1694448
  7. [7] A.-S. Bonnet-Bendhia and F. Starling, Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem. Math. Methods Appl. Sci.17 (1994) 305–338. Zbl0817.35109MR1273315
  8. [8] S.N. Chandler-Wilde and P. Monk, Existence, uniqueness, and variational methods for scattering by unbounded rough surfaces. SIAM. J. Math. Anal.37 (2005) 598–618. Zbl1127.35030MR2176117
  9. [9] M. Costabel, M. Dauge and S. Nicaise, Corner Singularities and Analytic Regularity for Linear Elliptic Systems. Part I: Smooth domains. http://hal.archives-ouvertes.fr/hal-00453934/. 
  10. [10] D. Dobson and A. Friedman, The time-harmonic Maxwell’s equations in a doubly periodic structure. J. Math. Anal. Appl.166 (1992) 507–528. Zbl0759.35046MR1160941
  11. [11] D.C. Dobson, A variational method for electromagnetic diffraction in biperiodic structures. Math. Model. Numer. Anal.28 (1994) 419–439. Zbl0820.65087MR1288506
  12. [12] H. Haddar and A. Lechleiter, Electromagnetic wave scattering from rough penetrable layers. SIAM J. Math. Anal.43 (2011) 2418–2433. Zbl1233.35182MR2861668
  13. [13] W. McLean, Strongly Elliptic Systems and Boundary Integral Operators. Cambridge University Press, Cambridge, UK (2000). Zbl0948.35001MR1742312
  14. [14] P. Monk, Finite Element Methods for Maxwell’s Equations. Oxford Science Publications, Oxford (2003). Zbl1024.78009
  15. [15] F. Rellich, Darstellung der Eigenwerte von Δu + λu = 0 durch ein Randintegral. Math. Zeitschrift 46 (1940) 635–636. Doi: 10.1007/BF01181459. Zbl0023.04204MR2456JFM66.0460.01
  16. [16] G. Schmidt, On the diffraction by biperiodic anisotropic structures. Appl. Anal.82 (2003) 75–92. Zbl1037.35086MR1961652
  17. [17] C. Wilcox, Scattering Theory for Diffraction Gratings. Appl. Math. Sci. Springer-Verlag 46 (1984). Zbl0541.76001MR725334

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.