Convergent iterative methods for the Hartree eigenproblem

G. Auchmuty; Wenyao Jia

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 5, page 575-610
  • ISSN: 0764-583X

How to cite

top

Auchmuty, G., and Jia, Wenyao. "Convergent iterative methods for the Hartree eigenproblem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.5 (1994): 575-610. <http://eudml.org/doc/193753>.

@article{Auchmuty1994,
author = {Auchmuty, G., Jia, Wenyao},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Hartree eigenproblem; variational principle; duality; iterative methods; convergence; Hartree functional},
language = {eng},
number = {5},
pages = {575-610},
publisher = {Dunod},
title = {Convergent iterative methods for the Hartree eigenproblem},
url = {http://eudml.org/doc/193753},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Auchmuty, G.
AU - Jia, Wenyao
TI - Convergent iterative methods for the Hartree eigenproblem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 5
SP - 575
EP - 610
LA - eng
KW - Hartree eigenproblem; variational principle; duality; iterative methods; convergence; Hartree functional
UR - http://eudml.org/doc/193753
ER -

References

top
  1. [1] J. P. AUBIN, I. EKELAND, 1984, Applied Nonlinear Analysis, Wiley Interscience, New York. Zbl0641.47066MR749753
  2. [2] G. AUCHMUTY, 1983, Duality for Non-convex Variational Principles, J. Diff. Equations, 10, 80-145 Zbl0533.49007MR717869
  3. [3] G AUCHMUTY, 1989, Duality algorithms for nonconvex vanational principles, Numer. Funct. Anal. and Optim., 10, 211-264. Zbl0646.49023MR989534
  4. [4] P BLANCHARD, E. BRÜNING, 1992, Variational Methods in Mathematical Physics, Springer-Verlag. Zbl0756.49023MR1230382
  5. [5] I. EKELAND, R. TEMAM, 1974, Analyse Convexe et Problèmes Variationnels, Dunod, Paris Zbl0281.49001MR463993
  6. [6] I. EKELAND, T. TURNBULL, 1983, Infinite-dimensional Optimization and Convexity, The Univ. of Chicago Press Zbl0565.49003MR769469
  7. [7] V FOCK, 1930, Nächerungsmethode zur hösung der quantemechanischen Mehrkörper-problems, Z. Phys., 61, 126-148. JFM56.1313.08
  8. [8] J. FROELICH, personal communication. 
  9. [9] D. GOGNY, P. L. LIONS, 1987, Hartree-Fock theory in Nuclear Physics, RAIRO Modél. Math. Anal. Numér., 20, 571-637 Zbl0607.35078MR877058
  10. [10] D. HARTREE, 1928, The wave mechamcs of an atom with a non-Coulomb central field Part I. Theory and methods, Proc. Comb. Phil. Soc., 24, 89-312. JFM54.0966.05
  11. [11] O LADYZHENSKAYA, 1985, The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York. Zbl0588.35003MR793735
  12. [12] L. D LANDAU, E. M LIFSHITZ, 1965, Quantum Mechanics, Pergamon, 2nd ed. Zbl0178.57901
  13. [13] E. H. LIEB, B. SIMON, 1974, On solutions of the Hartree-Fock problem for atoms and molecules, J. Chem. Phys., 61, 735-736. MR408618
  14. [14] E. H. LIEB, B. SIMON, 1977, The Hartree-Fock theory for Coulomb Systems, Comm. Math. Phys., 53, 185-194. MR452286
  15. [15] P. L. LIONS, 1987, Hartree-Fock equations for Coulomb Systems, Comm. Math. Phys., 109, 33-97. Zbl0618.35111MR879032
  16. [16] P. L. LIONS, 1989, On Hartree and Hartree-Fock equations in atomic and nuclear physics, Comp. Meth. Applied Mech. & Eng., 75, 53-60. Zbl0850.70012MR1035746
  17. [17] L. DE LOURA, 1986, A Numerical Method for the Hartree Equation of the Helium Atom, Calcolo, 23, 185-207. Zbl0613.65139MR897628
  18. [18] P. QUENTIN, H. FLOCARD, 1978, Self-consistent Calculations of Nuclear Properties with Phenomenological Effective Forces, Ann. Rev. Nucl. Part. Sci.,28, 523-596. 
  19. [19] M. REED, B. SIMON, 1980, Methods of Modern Mathematical Physics, Vol. III, Academic Press, New York. Zbl0405.47007MR751959
  20. [20] M. REEKEN, 1970, General Theorem on Bifurcation and its Application to the Hartree Equation of the Helium Atom, J. Math. Phys., 11, 2505-2512. MR279648
  21. [21] J. C. SLATER, 1930, A note on Hartree's Method, Phys. Rev., 35, 210-211. 
  22. [22] E. ZEIDLER, 1986, Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York. Zbl0583.47050MR816732
  23. [23] E. ZEIDLER, 1985, Nonlinear Functional Analysis and its Applications III, Springer-Verlag, New York Zbl0583.47051MR768749

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.