Convergent iterative methods for the Hartree eigenproblem
- Volume: 28, Issue: 5, page 575-610
- ISSN: 0764-583X
Access Full Article
topHow to cite
topAuchmuty, G., and Jia, Wenyao. "Convergent iterative methods for the Hartree eigenproblem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.5 (1994): 575-610. <http://eudml.org/doc/193753>.
@article{Auchmuty1994,
author = {Auchmuty, G., Jia, Wenyao},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Hartree eigenproblem; variational principle; duality; iterative methods; convergence; Hartree functional},
language = {eng},
number = {5},
pages = {575-610},
publisher = {Dunod},
title = {Convergent iterative methods for the Hartree eigenproblem},
url = {http://eudml.org/doc/193753},
volume = {28},
year = {1994},
}
TY - JOUR
AU - Auchmuty, G.
AU - Jia, Wenyao
TI - Convergent iterative methods for the Hartree eigenproblem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 5
SP - 575
EP - 610
LA - eng
KW - Hartree eigenproblem; variational principle; duality; iterative methods; convergence; Hartree functional
UR - http://eudml.org/doc/193753
ER -
References
top- [1] J. P. AUBIN, I. EKELAND, 1984, Applied Nonlinear Analysis, Wiley Interscience, New York. Zbl0641.47066MR749753
- [2] G. AUCHMUTY, 1983, Duality for Non-convex Variational Principles, J. Diff. Equations, 10, 80-145 Zbl0533.49007MR717869
- [3] G AUCHMUTY, 1989, Duality algorithms for nonconvex vanational principles, Numer. Funct. Anal. and Optim., 10, 211-264. Zbl0646.49023MR989534
- [4] P BLANCHARD, E. BRÜNING, 1992, Variational Methods in Mathematical Physics, Springer-Verlag. Zbl0756.49023MR1230382
- [5] I. EKELAND, R. TEMAM, 1974, Analyse Convexe et Problèmes Variationnels, Dunod, Paris Zbl0281.49001MR463993
- [6] I. EKELAND, T. TURNBULL, 1983, Infinite-dimensional Optimization and Convexity, The Univ. of Chicago Press Zbl0565.49003MR769469
- [7] V FOCK, 1930, Nächerungsmethode zur hösung der quantemechanischen Mehrkörper-problems, Z. Phys., 61, 126-148. JFM56.1313.08
- [8] J. FROELICH, personal communication.
- [9] D. GOGNY, P. L. LIONS, 1987, Hartree-Fock theory in Nuclear Physics, RAIRO Modél. Math. Anal. Numér., 20, 571-637 Zbl0607.35078MR877058
- [10] D. HARTREE, 1928, The wave mechamcs of an atom with a non-Coulomb central field Part I. Theory and methods, Proc. Comb. Phil. Soc., 24, 89-312. JFM54.0966.05
- [11] O LADYZHENSKAYA, 1985, The Boundary Value Problems of Mathematical Physics, Springer-Verlag, New York. Zbl0588.35003MR793735
- [12] L. D LANDAU, E. M LIFSHITZ, 1965, Quantum Mechanics, Pergamon, 2nd ed. Zbl0178.57901
- [13] E. H. LIEB, B. SIMON, 1974, On solutions of the Hartree-Fock problem for atoms and molecules, J. Chem. Phys., 61, 735-736. MR408618
- [14] E. H. LIEB, B. SIMON, 1977, The Hartree-Fock theory for Coulomb Systems, Comm. Math. Phys., 53, 185-194. MR452286
- [15] P. L. LIONS, 1987, Hartree-Fock equations for Coulomb Systems, Comm. Math. Phys., 109, 33-97. Zbl0618.35111MR879032
- [16] P. L. LIONS, 1989, On Hartree and Hartree-Fock equations in atomic and nuclear physics, Comp. Meth. Applied Mech. & Eng., 75, 53-60. Zbl0850.70012MR1035746
- [17] L. DE LOURA, 1986, A Numerical Method for the Hartree Equation of the Helium Atom, Calcolo, 23, 185-207. Zbl0613.65139MR897628
- [18] P. QUENTIN, H. FLOCARD, 1978, Self-consistent Calculations of Nuclear Properties with Phenomenological Effective Forces, Ann. Rev. Nucl. Part. Sci.,28, 523-596.
- [19] M. REED, B. SIMON, 1980, Methods of Modern Mathematical Physics, Vol. III, Academic Press, New York. Zbl0405.47007MR751959
- [20] M. REEKEN, 1970, General Theorem on Bifurcation and its Application to the Hartree Equation of the Helium Atom, J. Math. Phys., 11, 2505-2512. MR279648
- [21] J. C. SLATER, 1930, A note on Hartree's Method, Phys. Rev., 35, 210-211.
- [22] E. ZEIDLER, 1986, Nonlinear Functional Analysis and its Applications I, Springer-Verlag, New York. Zbl0583.47050MR816732
- [23] E. ZEIDLER, 1985, Nonlinear Functional Analysis and its Applications III, Springer-Verlag, New York Zbl0583.47051MR768749
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.