On the convergence of SCF algorithms for the Hartree-Fock equations
- Volume: 34, Issue: 4, page 749-774
- ISSN: 0764-583X
Access Full Article
topHow to cite
topCancès, Eric, and Le Bris, Claude. "On the convergence of SCF algorithms for the Hartree-Fock equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.4 (2000): 749-774. <http://eudml.org/doc/194011>.
@article{Cancès2000,
author = {Cancès, Eric, Le Bris, Claude},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Nonlinear eigenvalue problem; Hartree-Fock equations; self-consistent field; convergence analysis.},
language = {eng},
number = {4},
pages = {749-774},
publisher = {Dunod},
title = {On the convergence of SCF algorithms for the Hartree-Fock equations},
url = {http://eudml.org/doc/194011},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Cancès, Eric
AU - Le Bris, Claude
TI - On the convergence of SCF algorithms for the Hartree-Fock equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 4
SP - 749
EP - 774
LA - eng
KW - Nonlinear eigenvalue problem; Hartree-Fock equations; self-consistent field; convergence analysis.
UR - http://eudml.org/doc/194011
ER -
References
top- [1] G. Auchmuty and Wenyao Jia, Convergent iterative methods for the Hartree eigenproblem. RAIRO Modél. Math. Anal. Numér. 28 (1994) 575-610. Zbl0821.65047MR1295588
- [2] V. Bach, E.H. Lieb, M. Loss and J.P. Solovej, There are no unfilled shells in unrestricted Hartree-Fock theory. Phys. Rev. Lett. 72 (1994) 2981-2983.
- [3] V. Bonačić-Koutecký and J. Koutecký, General properties of the Hartree-Fock problem demonstrated on the frontier orbital model. II. Analysis of the customary iterative procedure. Theoret. Chim. Acta 36 (1975) 163-180.
- [4] J.C. Facelli and R.H. Contreras, A general relation between the intrinsic convergence properties of SCF Hartree-Fock calculations and the stability conditions of their solutions. J. Chem. Phys. 79 (1983) 3421-3423.
- [5] R. Fletcher, Optimization of SCF LCAO wave functions. Mol. Phys. 19 (1970) 55-63.
- [6] D.R. Hartree, The calculation of atomic structures. Wiley (1957). Zbl0079.21401MR90408
- [7] W.J. Hehre, L. Radom, P.V.R. Schleyer and J.A. Pople, Ab initio molecular orbital theory. Wiley (1986).
- [8] A. Igawa and H. Fukutome, A new direct minimization algorithm for Hartree-Fock calculations. Progr. Theoret. Phys. 54 (1975) 1266-1281.
- [9] J. Koutecký and V. Bonačić, On convergence difficulties in the iterative Hartree-Fock procedure. J. Chem. Phys. 55 (1971) 2408-2413.
- [10] E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math. 57 (1977) 93-105. Zbl0369.35022MR471785
- [11] E.H. Lieb, Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29 (1984) 3018-3028.
- [12] E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb Systems. Comm. Math. Phys. 53 (1977) 185-194. MR452286
- [13] P.L. Lions, Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys. 109 (1987) 33-97. Zbl0618.35111MR879032
- [14] R. McWeeny, The density matrix in self-consistent field theory. I. Iterative construction of the density matrix. Proc. Roy. Soc. London Ser. A 235 (1956) 496-509. Zbl0071.42302MR81755
- [15] R. McWeeny, Methods of molecular Quantum Mechanics. Academic Press (1992).
- [16] J. Paldus, Hartree-Fock stability and symmetry breaking, in Self Consistent Field Theory and Application. Elsevier (1990) 1-45.
- [17] P. Pulay, Improved SCF convergence acceleration. J. Comput. Chem. 3 (1982) 556-560.
- [18] M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis. Academic Press (1980). Zbl0459.46001MR751959
- [19] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators. Academic Press (1978). Zbl0401.47001MR493421
- [20] C.C.J. Roothaan, New developments in molecular orbital theory. Rev. Modern Phys. 23 (1951) 69-89. Zbl0045.28502
- [21] V.R. Saunders and I.H. Hillier, A "level-shifting" method for converging closed shell Hartree-Fock wave functions. Int. J. Quantum Chem. 7 (1973) 699-705.
- [22] H.B. Schlegel and J.J.W. McDouall, Do you have SCF stability and convergence problems?, in Computational Advances in Organic Chemistry, Kluwer Academic (1991) 167-185.
- [23] R. Seeger R. and J.A. Pople, Self-consistent molecular orbital methods. XVI. Numerically stable direct energy minimization procedures for solution of Hartree-Fock equations. J. Chem. Phys. 65 (1976) 265-271.
- [24] R.E. Stanton, The existence and cure of intrinsic divergence in closed shell SCF calculations. J. Chem. Phys. 75 (1981) 3426-3432.
- [25] R.E. Stanton, Intrinsic convergence in closed-shell SCF calculations. A general criterion. J. Chem. Phys. 75 (1981) 5416-5422.
- [26] M.C. Zerner and M. Hehenberger, A dynamical damping scheme for converging molecular SCF calculations. Chem. Phys. Lett. 62 (1979) 550-554.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.