On the convergence of SCF algorithms for the Hartree-Fock equations

Eric Cancès; Claude Le Bris

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2000)

  • Volume: 34, Issue: 4, page 749-774
  • ISSN: 0764-583X

How to cite

top

Cancès, Eric, and Le Bris, Claude. "On the convergence of SCF algorithms for the Hartree-Fock equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.4 (2000): 749-774. <http://eudml.org/doc/194011>.

@article{Cancès2000,
author = {Cancès, Eric, Le Bris, Claude},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Nonlinear eigenvalue problem; Hartree-Fock equations; self-consistent field; convergence analysis.},
language = {eng},
number = {4},
pages = {749-774},
publisher = {Dunod},
title = {On the convergence of SCF algorithms for the Hartree-Fock equations},
url = {http://eudml.org/doc/194011},
volume = {34},
year = {2000},
}

TY - JOUR
AU - Cancès, Eric
AU - Le Bris, Claude
TI - On the convergence of SCF algorithms for the Hartree-Fock equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 4
SP - 749
EP - 774
LA - eng
KW - Nonlinear eigenvalue problem; Hartree-Fock equations; self-consistent field; convergence analysis.
UR - http://eudml.org/doc/194011
ER -

References

top
  1. [1] G. Auchmuty and Wenyao Jia, Convergent iterative methods for the Hartree eigenproblem. RAIRO Modél. Math. Anal. Numér. 28 (1994) 575-610. Zbl0821.65047MR1295588
  2. [2] V. Bach, E.H. Lieb, M. Loss and J.P. Solovej, There are no unfilled shells in unrestricted Hartree-Fock theory. Phys. Rev. Lett. 72 (1994) 2981-2983. 
  3. [3] V. Bonačić-Koutecký and J. Koutecký, General properties of the Hartree-Fock problem demonstrated on the frontier orbital model. II. Analysis of the customary iterative procedure. Theoret. Chim. Acta 36 (1975) 163-180. 
  4. [4] J.C. Facelli and R.H. Contreras, A general relation between the intrinsic convergence properties of SCF Hartree-Fock calculations and the stability conditions of their solutions. J. Chem. Phys. 79 (1983) 3421-3423. 
  5. [5] R. Fletcher, Optimization of SCF LCAO wave functions. Mol. Phys. 19 (1970) 55-63. 
  6. [6] D.R. Hartree, The calculation of atomic structures. Wiley (1957). Zbl0079.21401MR90408
  7. [7] W.J. Hehre, L. Radom, P.V.R. Schleyer and J.A. Pople, Ab initio molecular orbital theory. Wiley (1986). 
  8. [8] A. Igawa and H. Fukutome, A new direct minimization algorithm for Hartree-Fock calculations. Progr. Theoret. Phys. 54 (1975) 1266-1281. 
  9. [9] J. Koutecký and V. Bonačić, On convergence difficulties in the iterative Hartree-Fock procedure. J. Chem. Phys. 55 (1971) 2408-2413. 
  10. [10] E.H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation. Stud. Appl. Math. 57 (1977) 93-105. Zbl0369.35022MR471785
  11. [11] E.H. Lieb, Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29 (1984) 3018-3028. 
  12. [12] E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb Systems. Comm. Math. Phys. 53 (1977) 185-194. MR452286
  13. [13] P.L. Lions, Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys. 109 (1987) 33-97. Zbl0618.35111MR879032
  14. [14] R. McWeeny, The density matrix in self-consistent field theory. I. Iterative construction of the density matrix. Proc. Roy. Soc. London Ser. A 235 (1956) 496-509. Zbl0071.42302MR81755
  15. [15] R. McWeeny, Methods of molecular Quantum Mechanics. Academic Press (1992). 
  16. [16] J. Paldus, Hartree-Fock stability and symmetry breaking, in Self Consistent Field Theory and Application. Elsevier (1990) 1-45. 
  17. [17] P. Pulay, Improved SCF convergence acceleration. J. Comput. Chem. 3 (1982) 556-560. 
  18. [18] M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis. Academic Press (1980). Zbl0459.46001MR751959
  19. [19] M. Reed and B. Simon, Methods of modern mathematical physics. IV. Analysis of operators. Academic Press (1978). Zbl0401.47001MR493421
  20. [20] C.C.J. Roothaan, New developments in molecular orbital theory. Rev. Modern Phys. 23 (1951) 69-89. Zbl0045.28502
  21. [21] V.R. Saunders and I.H. Hillier, A "level-shifting" method for converging closed shell Hartree-Fock wave functions. Int. J. Quantum Chem. 7 (1973) 699-705. 
  22. [22] H.B. Schlegel and J.J.W. McDouall, Do you have SCF stability and convergence problems?, in Computational Advances in Organic Chemistry, Kluwer Academic (1991) 167-185. 
  23. [23] R. Seeger R. and J.A. Pople, Self-consistent molecular orbital methods. XVI. Numerically stable direct energy minimization procedures for solution of Hartree-Fock equations. J. Chem. Phys. 65 (1976) 265-271. 
  24. [24] R.E. Stanton, The existence and cure of intrinsic divergence in closed shell SCF calculations. J. Chem. Phys. 75 (1981) 3426-3432. 
  25. [25] R.E. Stanton, Intrinsic convergence in closed-shell SCF calculations. A general criterion. J. Chem. Phys. 75 (1981) 5416-5422. 
  26. [26] M.C. Zerner and M. Hehenberger, A dynamical damping scheme for converging molecular SCF calculations. Chem. Phys. Lett. 62 (1979) 550-554. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.