Stabilized finite element methods for miscible displacement in porous media

Yuting Wei

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 5, page 611-665
  • ISSN: 0764-583X

How to cite

top

Wei, Yuting. "Stabilized finite element methods for miscible displacement in porous media." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.5 (1994): 611-665. <http://eudml.org/doc/193754>.

@article{Wei1994,
author = {Wei, Yuting},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
language = {eng},
number = {5},
pages = {611-665},
publisher = {Dunod},
title = {Stabilized finite element methods for miscible displacement in porous media},
url = {http://eudml.org/doc/193754},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Wei, Yuting
TI - Stabilized finite element methods for miscible displacement in porous media
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 5
SP - 611
EP - 665
LA - eng
UR - http://eudml.org/doc/193754
ER -

References

top
  1. [1] J. BEAR, 1988, Dynamics of Fluids in Porous Media, Dover Publication, Inc., New York. Zbl1191.76002
  2. [2] R. B. BIRD, W. E. STEWART, E. N. LIGHFOOT, 1966, Transport Phenomena, John Wiley, New York. 
  3. [3] F. BREZZI, M. FORTIN, 1991, Mixed and Hybrid Finite Element Methods, Springer-Verlag. Zbl0788.73002MR1115205
  4. [4] A. N. BROOKS, T. J. R. HUGHES, 1982, Streamline upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Meths, 32, 199-259. Zbl0497.76041MR679322
  5. [5] B. COCKBURN, C. W. SHU, 1991, The Runge-Kutta local projection P' discontinuous Galerkin finite element method for scalar conservation laws, RAIRO-Model. Math. Anal. Numer., 25, 337-361. Zbl0732.65094MR1103092
  6. [6] C. T. DAWSON, 1991, Godunov-mixed methods for advective flow problems in one space dimension, SIAM J. Numer. Anal., 28, 1282-1309. Zbl0741.65068MR1119271
  7. [7] J. Jr. DOUGLAS, 1982, Simulation of miscible displacement in porous media by a modified method of characteristics procedure, In Numerical Analysis, Dundee 1981, vol. 912 of Lecture Notes in Mathematics, Springer-Verlag, Berlin. Zbl0476.76100MR654343
  8. [8] J. Jr. DOUGLAS, 1984, Numerical methods for the flow of miscible fluids in porous media, In Numerical Methods in Coupled Systems, pp. 405-439, John Wiley and Sons Ltd., London, R. W. Lewis, P. Bettess and E. Hinton, Eds. Zbl0585.76138
  9. [9] J. Jr. DOUGLAS, R. E. EWING, M. F. WHEELER, 1983, A time-discretization procedure for a mixed finite element approximation of miscible displacement in porous media, R. A. I. R. O., Anal. Numér., 17, 249-265. Zbl0526.76094MR702137
  10. [10] J. Jr. DOUGLAS, R. E. EWING, M. F. WHEELER, 1983, The approximation of the pressure by a mixed method in the simulation of miscible displacement, R.A.I.R.O., Anal. Numér., 17, 17-33. Zbl0516.76094MR695450
  11. [11] J. Jr. DOUGLAS, J. L. HENSLEY, Y. WEI, L. YEH, J. JAFFRÉ, P. J. PAES LEME, T. S. RAMAKRISHNAM, D. J. WILKINSON, 1992, A derivation for Darcy's law for miscible fluids and a revised model for miscible displacement in porous media, In Mathematical Modeling in Water Resources, vol. 2, pp. 165-178, Computational Mechamcs Publications, Elsevier Applied Science, Southampton, Boston, T. F. RUSSELL, E. R. EWING, C. A. BREBBIA, W. G. GRAY, G. F. PINDER, Eds. 
  12. [12] J. Jr. DOUGLAS, J. E. ROBERTS, 1983, Numerical methods for a model for compressible miscible displacement in porous media, Math. Comp., 41, 441-459. Zbl0537.76062MR717695
  13. [13] J. Jr. DOUGLAS, T. F. RUSSELL, 1982, Numerical methods for convectiondominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal.,19, 871-885. Zbl0492.65051MR672564
  14. [14] R. DURÁN, 1988, On the approximation of miscible displacement in porous media by a method of characteristics combined with a mixed method, SIAM J. Numer. Anal., 25, 989-1001. Zbl0661.76096MR960861
  15. [15] R. E. EWING, 1983, The mathematics of reservoir simulation, Frontiers in Applied Mathematics, SIAM, Philadelphia. Zbl0533.00031MR770577
  16. [16] R. E EWING, T. F. RUSSELL, M. F. WHEELER, 1983, Simulation of miscible displacement using mixed methods and a modified method of characteristics, In Proceedings, Seventh SPE Symposium on Reservoir Simulation, pp. 71-81, Dallas, Texas, Society of Petroleum Engineers, Paper SPE 12241. 
  17. [17] R. E. EWING, T. F. RUSSELL, M. F. WHEELER, 1984, Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics, Comp. Meth. Appl. Mech. Eng., 47, 73-92. Zbl0545.76131MR777394
  18. [18] L. P. FRANCA, S. L. FREY, 1992, Stabilized finite element methods: II. The incompresible Navier-Stokes Equations, Comput. Meths. Appl. Mech. Engrg., 99, 209-233. Zbl0765.76048MR1186727
  19. [19] L. P. FRANCA, S. L. FREY, T. J. R. HUGHES, 1992, Stabilized finite element methods : I. Application to the advective-diffusive model, Comput. Meths. Appl. Mech. Engrg., 95, 253-276. Zbl0759.76040MR1155924
  20. [20] V. GIRAULT, P.- A. RAVIART, 1986, Finite Element Methods for Navier-Stokes Equations, Theory and Algonthms, Springer-Verlag, Berlin, Heidelberg, New York. Zbl0585.65077MR851383
  21. [21] A. HARTEN, S. OSHER, 1987, Uniformly high-order accurate non-oscilatory schemes I, SIAM J. Numer. Anal., 24 279-309 Zbl0627.65102MR881365
  22. [22] T. J. R. HUGHES, A. N. BROOKS, 1979, A multidimensional upwind scheme with no cross-wind diffusion, In Finite Element Methods for Convection Dominated Flows, pp. 19-35. ASME, New York, 1979 T. J. R. HUGUES, ed. Zbl0423.76067MR571679
  23. [23] T. J. R. HUGHES, A. N. BROOKS, 1982, A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions : application to the streamline upwind procedure, In Finite Element Methods in Fluids, Wiley, Chichester, R. H. GALLAGHER, ed. 
  24. [24] T. J. R. HUGHES, L. P. FRANCA, G. M. HULBERT, 1989, A new finite element formulation for computational fluid dynamics : VIII The Galerkin/least-square method for convective-diffusive equations, Comput. Meths..Appl. Engrg., 73, 173-189. Zbl0697.76100MR1002621
  25. [25] J. JAFFRE, J. E. ROBERTS, 1985, Upstream weighting and mixed finite elements in the simulation of miscible displacements, Modélisation Mathématique et Analyse Numérique, 19, 443-460. Zbl0568.76096MR807326
  26. [26] C. JOHNSON, J. SARANEN, 1986, Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp., 47, 1-18. Zbl0609.76020MR842120
  27. [27] C. JOHNSON, V. THOMÉE, 1981, Error estimates for some mixed finite element methods for parabolic type problems, R. A. I. R. O., Anal. Numér., 14, 41-78. Zbl0476.65074MR610597
  28. [28] S. OSHER, 1984, Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal., 22, 947-961. Zbl0627.35061MR799122
  29. [29] D. W. PEACEMAN, 1966, Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement, Soc. Petroleum Engr. J., 6, 213-216. 
  30. [30] D. W. PEACEMAN, 1977, Fundamentals of Numerical Reservoir Simulation, Elsevier, New York. 
  31. [31] T. S. RAMAKRISHNAM, D. J. WILKINSON, pivate communication. 
  32. [32] T. F. RUSSELL, 1985, Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media, SIAM J. Numer. Anal., 22, 970-1013. Zbl0594.76087MR799124
  33. [33] C. W. SHU, 1987, TVB uniformly high-order schemes for conservation laws, Math. of. Comp., 49, 105-121. Zbl0628.65075MR890256
  34. [34] A. SZEPESSY, 1991, Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions, R. A. I. R. O. Modél. Math. Anal. Numér., 26, 749-782. Zbl0751.65061MR1135992
  35. [35] Y. WEI, Discontinuous Galerkin - mixed finite element methods for convection - dominated diffusion problems, to appear. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.