Reduced continuity finite element methods for first order scalar hyperbolic equations

D.-M. Cai; R. S. Falk

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 6, page 667-698
  • ISSN: 0764-583X

How to cite

top

Cai, D.-M., and Falk, R. S.. "Reduced continuity finite element methods for first order scalar hyperbolic equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.6 (1994): 667-698. <http://eudml.org/doc/193755>.

@article{Cai1994,
author = {Cai, D.-M., Falk, R. S.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {explicit finite element methods; first order linear hyperbolic problem; error estimates; convergence; numerical results; comparisons},
language = {eng},
number = {6},
pages = {667-698},
publisher = {Dunod},
title = {Reduced continuity finite element methods for first order scalar hyperbolic equations},
url = {http://eudml.org/doc/193755},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Cai, D.-M.
AU - Falk, R. S.
TI - Reduced continuity finite element methods for first order scalar hyperbolic equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 6
SP - 667
EP - 698
LA - eng
KW - explicit finite element methods; first order linear hyperbolic problem; error estimates; convergence; numerical results; comparisons
UR - http://eudml.org/doc/193755
ER -

References

top
  1. [1] D. CAI, Reduced continuity finite element methods for hyperbolic equations, Ph. D. Dissertation, Rutgers University, 1991. 
  2. [2] P. G. CIARLET, The Fintie Element Method for Elliptic Equations, North-Holland, Amsterdam, 1978. MR520174
  3. [3] R. S. FALK and G. R. RICHTER, Analysis of a continuous fimte element method for hyperbolic equations, SIAM J. Numer. Anal., 24 (1987), pp. 257-278. Zbl0619.65100MR881364
  4. [4] R. S. FALK and G. R. RICHTER, Local estimates for a finite element method for hyperbolic and convection-diffusion equations, SIAM J. Numer. Anal., 29 (1992), pp. 730-754. Zbl0757.65104MR1163354
  5. [5] M. FORTIN and M. SOULIE, A non-conforming piecewise quadratic finite element on triangles, Internat. J. Numer. Methods Engrg, 19 (1983), pp. 505-520. Zbl0514.73068MR702056
  6. [6] T. J. R. HUGHES and A. BROOKS, A multidimensional upwind scheme with no crosswind diffusion, in Finite Element Methods for Convection Dominated Flows (T. J. R. Hughes, ed.), AMD (ASME), 1979, pp. 19-35. Zbl0423.76067MR571681
  7. [7] C. JOHNSON, U. NÄVERT and J. PITKÄRANTA, Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg, 45 (1984), pp. 285-312. Zbl0526.76087MR759811
  8. [8] C. JOHNSON and J. PITKÄRANTA, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp., 46 (1986), pp. 1-26. Zbl0618.65105MR815828
  9. [9] P. LESAINT and P. A. RAVIART, On a finite element method for solving the neutron transport equations, in Mathematical Aspects of Finite Elements in Partial Differential Equations (C. de Boor), ed.), Academis Press, New York, 1974, pp. 89-123. Zbl0341.65076MR658142
  10. [10] W. H. REED and T. R. HILL, Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory, Report LA-UR-73-479 (1973). 
  11. [11] G. R. RICHTER, An optimal-order error estimate for the discontinuous Galerkin method, Math. Comp., 50 (1988), pp. 75-88. Zbl0643.65059MR917819
  12. [12] R. WINTHER, A stable finite element method for first-order hyperbolic systems, Math. Comp., 36 (1981), pp. 65-86. Zbl0462.65066MR595042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.