Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities
- Volume: 28, Issue: 6, page 725-744
- ISSN: 0764-583X
Access Full Article
topHow to cite
topLiu, W. B., and Barrett, John W.. "Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.6 (1994): 725-744. <http://eudml.org/doc/193757>.
@article{Liu1994,
author = {Liu, W. B., Barrett, John W.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {degenerate quasilinear elliptic equations; convergence; error bounds; finite element; variational inequality},
language = {eng},
number = {6},
pages = {725-744},
publisher = {Dunod},
title = {Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities},
url = {http://eudml.org/doc/193757},
volume = {28},
year = {1994},
}
TY - JOUR
AU - Liu, W. B.
AU - Barrett, John W.
TI - Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 6
SP - 725
EP - 744
LA - eng
KW - degenerate quasilinear elliptic equations; convergence; error bounds; finite element; variational inequality
UR - http://eudml.org/doc/193757
ER -
References
top- [1] C. ATKINSON, C. R. CHAMPION, 1984, Some boundary-value problems for the equation ∇ (|∇φ|N ∇φ) = 0. Q. Jl Mech. Appl. Math., 37, 401-419. Zbl0567.73054MR760209
- [2] J. W. BARRETT, W. B. LIU, 1993, Finite element approximation of the p-Laplacian, Math. Comp., 61. 523-537. Zbl0791.65084MR1192966
- [3] J. W. BARRETT, W. B. LIU, 1993, Finite element error analysis of a quasi-Newtoman flow obeying the Carreau or power law, Numer. Math., 64, 433-453. Zbl0796.76049MR1213411
- [4] L. W. BARRETT, W. B. LIU, 1994, Finite element approximation of the parabolic p-Laplacian, SIAM, J. Numer. Anal., 31, 413-428. Zbl0805.65097MR1276708
- [5] H. J. CHOE, 1991, A regularity theory for a general class of quasilmear elliptic partial differential equations and obstacle problems, Arch. Rat. Mech. Anal., 114, 383-394. Zbl0733.35024MR1100802
- [6] S. S. CHOW, 1989, Finite element error estimates for non-linear elliptic equations of monotone type, Numer. Math. 54, 373-393. Zbl0643.65058MR972416
- [7] P.-G. CIARLET, 1978, The Finite Element Methodfor Elliptic Problems, North. Holland, Amsterdam. Zbl0383.65058MR520174
- [8] P. CORTEY-DUMONT, 1985, On finite element approximation in the L∞-norm of variational inequalities, Numer. Math., 47, 45-57. Zbl0574.65064MR797877
- [9] M. DOBROWOLSKI, R. RANNACHER, 1980, Finite element methods for nonlinear elliptic Systems of second order, Math. Nachr., 94, 155-172. Zbl0444.65077MR582526
- [10] R. S. FALK, 1974, Error estimates for the approximation of a class of variational inequalities, Math. Comp., 28, 963-971. Zbl0297.65061MR391502
- [11] J. FREHSE, R. RANNACHER, 1978, Asymptotic L∞-error estimates for linear finite element approximations of quasilinear boundary problems, SIAM, J. Numer. Anal., 15, 419 431. Zbl0386.65049MR502037
- [12] R. GLOWINSKI, A. MARROCCO, 1975, Sur l'approximation par éléments finis d'ordre un, et la résolution, par pénalisation-dualite, d'une classe de problèmes de Dirichlet non linéaires, R.A.I.R.O. Analyse Numérique, 2, 41-64. Zbl0368.65053MR388811
- [13] W. B. LIU, J. W. BARRETT, 1993, A remark on the regulanty of the solutions of the p-Laplacian and its applications to their finite element approximation, J. Math. Anal. Appl., 178, 470-487. Zbl0799.35085MR1238889
- [14] W. B. LIU, J. W. BARRETT, 1993, A further remark on the regularity of the solutions of the p-Laplacian and its applications to their finite element approximation, Nonlinear Anal., 21, 379-387. Zbl0856.35017MR1237129
- [15] W. B. Liu, J. W. BARRETT, 1993, Higher order regularity for the solutions of some quasilinear degenerate elliptic equations in the plane, SIAM, J. Math. Anal., 24, 1522-1536. Zbl0802.35013MR1241156
- [16] W. B. LIU, J. W. BARRETT, Finite element approximation of some degenerate monotone quasilinear elliptic Systems, SIAM, J. Numer. Anal. (to appear). Zbl0846.65064MR1377245
- [17] H. D. MITTELMANN, 1978, On the approximate solution of nonlinear variation inequalities, Numer. Math., 29, 451-462. Zbl0354.65054MR658146
- [18] R. H. NOCHETTO, 1989, Pointwise accuracy of a finite element method for nonlinear variational inequalities, Numer. Math., 54, 601-618. Zbl0661.65065MR981294
- [19] J. R. PHILIP, 1961, N-diffusion, Aust. J. Phys., 14. 1-13. Zbl0137.18402MR140343
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.