Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities

W. B. Liu; John W. Barrett

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 6, page 725-744
  • ISSN: 0764-583X

How to cite

top

Liu, W. B., and Barrett, John W.. "Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.6 (1994): 725-744. <http://eudml.org/doc/193757>.

@article{Liu1994,
author = {Liu, W. B., Barrett, John W.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {degenerate quasilinear elliptic equations; convergence; error bounds; finite element; variational inequality},
language = {eng},
number = {6},
pages = {725-744},
publisher = {Dunod},
title = {Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities},
url = {http://eudml.org/doc/193757},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Liu, W. B.
AU - Barrett, John W.
TI - Quasi-norm error bounds for the finite element approximation of some degenerate quasilinear elliptic equations and variational inequalities
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 6
SP - 725
EP - 744
LA - eng
KW - degenerate quasilinear elliptic equations; convergence; error bounds; finite element; variational inequality
UR - http://eudml.org/doc/193757
ER -

References

top
  1. [1] C. ATKINSON, C. R. CHAMPION, 1984, Some boundary-value problems for the equation ∇ (|∇φ|N ∇φ) = 0. Q. Jl Mech. Appl. Math., 37, 401-419. Zbl0567.73054MR760209
  2. [2] J. W. BARRETT, W. B. LIU, 1993, Finite element approximation of the p-Laplacian, Math. Comp., 61. 523-537. Zbl0791.65084MR1192966
  3. [3] J. W. BARRETT, W. B. LIU, 1993, Finite element error analysis of a quasi-Newtoman flow obeying the Carreau or power law, Numer. Math., 64, 433-453. Zbl0796.76049MR1213411
  4. [4] L. W. BARRETT, W. B. LIU, 1994, Finite element approximation of the parabolic p-Laplacian, SIAM, J. Numer. Anal., 31, 413-428. Zbl0805.65097MR1276708
  5. [5] H. J. CHOE, 1991, A regularity theory for a general class of quasilmear elliptic partial differential equations and obstacle problems, Arch. Rat. Mech. Anal., 114, 383-394. Zbl0733.35024MR1100802
  6. [6] S. S. CHOW, 1989, Finite element error estimates for non-linear elliptic equations of monotone type, Numer. Math. 54, 373-393. Zbl0643.65058MR972416
  7. [7] P.-G. CIARLET, 1978, The Finite Element Methodfor Elliptic Problems, North. Holland, Amsterdam. Zbl0383.65058MR520174
  8. [8] P. CORTEY-DUMONT, 1985, On finite element approximation in the L∞-norm of variational inequalities, Numer. Math., 47, 45-57. Zbl0574.65064MR797877
  9. [9] M. DOBROWOLSKI, R. RANNACHER, 1980, Finite element methods for nonlinear elliptic Systems of second order, Math. Nachr., 94, 155-172. Zbl0444.65077MR582526
  10. [10] R. S. FALK, 1974, Error estimates for the approximation of a class of variational inequalities, Math. Comp., 28, 963-971. Zbl0297.65061MR391502
  11. [11] J. FREHSE, R. RANNACHER, 1978, Asymptotic L∞-error estimates for linear finite element approximations of quasilinear boundary problems, SIAM, J. Numer. Anal., 15, 419 431. Zbl0386.65049MR502037
  12. [12] R. GLOWINSKI, A. MARROCCO, 1975, Sur l'approximation par éléments finis d'ordre un, et la résolution, par pénalisation-dualite, d'une classe de problèmes de Dirichlet non linéaires, R.A.I.R.O. Analyse Numérique, 2, 41-64. Zbl0368.65053MR388811
  13. [13] W. B. LIU, J. W. BARRETT, 1993, A remark on the regulanty of the solutions of the p-Laplacian and its applications to their finite element approximation, J. Math. Anal. Appl., 178, 470-487. Zbl0799.35085MR1238889
  14. [14] W. B. LIU, J. W. BARRETT, 1993, A further remark on the regularity of the solutions of the p-Laplacian and its applications to their finite element approximation, Nonlinear Anal., 21, 379-387. Zbl0856.35017MR1237129
  15. [15] W. B. Liu, J. W. BARRETT, 1993, Higher order regularity for the solutions of some quasilinear degenerate elliptic equations in the plane, SIAM, J. Math. Anal., 24, 1522-1536. Zbl0802.35013MR1241156
  16. [16] W. B. LIU, J. W. BARRETT, Finite element approximation of some degenerate monotone quasilinear elliptic Systems, SIAM, J. Numer. Anal. (to appear). Zbl0846.65064MR1377245
  17. [17] H. D. MITTELMANN, 1978, On the approximate solution of nonlinear variation inequalities, Numer. Math., 29, 451-462. Zbl0354.65054MR658146
  18. [18] R. H. NOCHETTO, 1989, Pointwise accuracy of a finite element method for nonlinear variational inequalities, Numer. Math., 54, 601-618. Zbl0661.65065MR981294
  19. [19] J. R. PHILIP, 1961, N-diffusion, Aust. J. Phys., 14. 1-13. Zbl0137.18402MR140343

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.