Asymptotics of scattering frequencies with small imaginary parts for an acoustic resonator

Rustem R. Gadyl'shin

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1994)

  • Volume: 28, Issue: 6, page 761-780
  • ISSN: 0764-583X

How to cite

top

Gadyl'shin, Rustem R.. "Asymptotics of scattering frequencies with small imaginary parts for an acoustic resonator." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.6 (1994): 761-780. <http://eudml.org/doc/193759>.

@article{Gadylshin1994,
author = {Gadyl'shin, Rustem R.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {thin connecting tube; shell; Neumann boundary condition; power series; small parameter},
language = {eng},
number = {6},
pages = {761-780},
publisher = {Dunod},
title = {Asymptotics of scattering frequencies with small imaginary parts for an acoustic resonator},
url = {http://eudml.org/doc/193759},
volume = {28},
year = {1994},
}

TY - JOUR
AU - Gadyl'shin, Rustem R.
TI - Asymptotics of scattering frequencies with small imaginary parts for an acoustic resonator
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 6
SP - 761
EP - 780
LA - eng
KW - thin connecting tube; shell; Neumann boundary condition; power series; small parameter
UR - http://eudml.org/doc/193759
ER -

References

top
  1. [1] O. M. RAYLEIGH, 1916, The Theory of Helmholtz Resonator, Proc. of Royal Soc., London, 92, 265-275. Zbl46.1273.03JFM46.1273.03
  2. [2] J. M. MILES, 1971, Scattering by a Spherical Cap, Journ. Acoust. Soc. of America, 50, 892-903. 
  3. [3] R. R. GADYL'SHIN, 1990, On the amplitude of oscillations in Helmholtz resonator, Dokl. Akad. Nauk. SSSR, 310, 1094-1097. MR1050165
  4. [4] R. R. GADYL'SHIN, 1992, Surface potentials and the method of matched asymptotic expansions in a problem of Helmholtz resonator, Algebra i Analiz, 4 88-115. Zbl0787.35024MR1182395
  5. [5] P. D. LAX, R. S. PHILLIPS, 1967, Scattering Theory, Academic Press, New York. Zbl0186.16301MR217440
  6. [6] J. SANCHEZ-HUBERT, E. SANCHEZ-PALENCIA, 1989, Vibration and Coupling of Continuons Systems. Asymptotic Methods, Berlin, Springer-Verlag. Zbl0698.70003MR996423
  7. [7] R. R. GADYL'SHIN, 1992, The method of matched asymptotic expansions in the problem of acoustic Helmholtz resonator, Prikl. Mat. Mekh., 56, 412-418. Zbl0786.76075MR1191827
  8. [8] R. R. GADYL'SHIN, 1992, On influence of choice of location for hole and on its form to properties of acoustic resonator, Teor i mat. fiz., 93, 107-118. MR1226213
  9. [9] R. R. GADYL'SHIN, 1992, About merged poles of an acoustic resonator, Doklady Akademii Nauk SSSR, 324, 773-776. MR1201688
  10. [10] R. R. GADYL'SHIN, 1992, On system of inserted resonators, Doklady Akademii Nauk SSSR, 326, 939-942. Zbl0793.76079MR1202315
  11. [11] R. R. GADYL'SHIN, On quasi-stationary state of Helmholtz resonator, Prikl. Mat. Mekh. (to appear) 
  12. [12] M. D. VAN DYKE, 1964, Perturbation Method in Fluid Mechanics, Academic Press, New York. Zbl0136.45001MR176702
  13. [13] A. H. NAYFEH, 1973, Perturbation Methods, John Wiley, New York. Zbl0265.35002MR404788
  14. [14] A. M. IL'IN, 1989, Matched asymptotic expansions for solutions of boundary valued problems, Nauka, Moscow. MR1007834
  15. [15] J. T. BEALE, 1973, Scattering Frequencies of Resonators, Comm. Pure and Applied Math., 26, 549-564. Zbl0254.35094MR352730
  16. [16] R. M. BROWN, P. D. HISLOP, A. MARTINEZ, Eigenvalues and resonances for domains with tube : Neumann boundary conditions, J. Differential equation (to appear). Zbl0815.35075MR1310941
  17. [17] R. R. GADYL'SHIN, On poles of acoustic resonator, Funktsional. Anal. i Prilozhen. (to appear). MR1264313
  18. [18] R. R. GADYL'SHIN, 1993, On scattering frequencies of acoustic resonator, C. R. Acad. Sci. Paris Sér. I, vol. 316, 859-963. Zbl0774.76071MR1218297
  19. [19] S. JIMBO, Perturbation formula of eigenvalues in a singularly perturbed domain, J. Math. Soc., Japan (to appear). Zbl0785.35069MR1206658
  20. [20] R. R. GADYL'SHIN, Asymptotic of second eigenfrequency for System of two body connected by thin tube, Teor. i mat. fiz. (to appear). 
  21. [21] D. COLTON, R. KRESS, 1983, Integral Equation Methods in Scattering Theory, John Willey & Sons, New York. Zbl0522.35001MR700400
  22. [22] V. G. MAZ'YA, S. A. NAZAROV, B. A. PLAMENEVSKY, 1984, Asymptotical expansion of eigenvalues of boundary value problems for Laplacian, Izv. Akad. Nauk SSSR, Ser. mat., 48, 347-371. Zbl0566.35031MR740795

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.