Global error control for the continuous Galerkin finite element method for ordinary differential equations
- Volume: 28, Issue: 7, page 815-852
- ISSN: 0764-583X
Access Full Article
topHow to cite
topEstep, Donald, and French, Donald. "Global error control for the continuous Galerkin finite element method for ordinary differential equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 28.7 (1994): 815-852. <http://eudml.org/doc/193761>.
@article{Estep1994,
author = {Estep, Donald, French, Donald},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {continuous Galerkin finite element method; error bounds; global error control; numerical experiments},
language = {eng},
number = {7},
pages = {815-852},
publisher = {Dunod},
title = {Global error control for the continuous Galerkin finite element method for ordinary differential equations},
url = {http://eudml.org/doc/193761},
volume = {28},
year = {1994},
}
TY - JOUR
AU - Estep, Donald
AU - French, Donald
TI - Global error control for the continuous Galerkin finite element method for ordinary differential equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1994
PB - Dunod
VL - 28
IS - 7
SP - 815
EP - 852
LA - eng
KW - continuous Galerkin finite element method; error bounds; global error control; numerical experiments
UR - http://eudml.org/doc/193761
ER -
References
top- [1] P. CIARLET, 1987, The Finite Element Method for Elliptic Problems. North-Holland, New York. Zbl0383.65058MR520174
- [2] K. ERIKSSON, C. JOHNSON, 1987, Error estimates and automatic time step control for nonlinear parabolic problems, I, SIAM J. Numer. Anal., 24, 12-23. Zbl0618.65104MR874731
- [3] K. ERIKSSON, C. JOHNSON, 1991, Adaptive finite element methods for parabolic problems I a linear model problem, SIAM J. Numer. Anal., 28, 43-77. Zbl0732.65093MR1083324
- [4] K. ERIKSSON, C. JOHNSON, 1992, Adaptive finite element methods for parabolic problems II optimal error estimates in L∞(L2) and L∞(L∞), preprint # 1992-09, Chalmers University of Technology. Zbl0830.65094MR1335652
- [5] K. ERIKSSON, C. JOHNSON, Adaptive finite element methods for parabolic problems III time steps variable in space, in preparation.
- [6] K. ERIKSSON, C. JOHNSON, 1992, Adaptive finite element methods for parabolic problems IV nonlinear problems, Preprint # 1992-44, Chalmers Umversity of Technology. Zbl0835.65116MR1360457
- [7] K. ERIKSSON, C. JOHNSON, 1993, Adaptive finite element methods for parabolic problems V. long-time integration, preprint # 1993-04, Chalmers University of Technology. Zbl0835.65117MR1360458
- [8] D. ESTEP, A posteriori error bounds and global error control for approximations of ordinary differential equations, SIAM J. Numer. Anal. (to appear). Zbl0820.65052MR1313704
- [9] D. ESTEP, A. STUART, The dynamical behavior of the discontinuous Galerkin method and related difference schemes, preprint. Zbl0998.65080MR1898746
- [10] D. FRENCH, S. JENSEN, Long time behaviour ofarbitrary order continuous time Galerkin schemes for some one-dimensional phase transition problems, preprint. Zbl0806.65132MR1283945
- [11] D. FRENCH, S. JENSEN, 1992, Global dynamics of finite element in time approximations to nonlinear evolution problems, International Conference on Innovative Methods in Numerical Analysis, Bressanone, Italy.
- [12] D. FRENCH, J. SCHAEFFER, 1990, Continuous finite element methods which preserve energy properties for nonlinear problems, Appl. Math. Comp., 39, 271-295. Zbl0716.65084MR1075255
- [13] J. HALE, 1980, Ordinary Differential Equations, John Wiley and Sons, Inc., New York. Zbl0186.40901MR587488
- [14] C. JOHNSON, 1988, Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary differential equations, SIAM J. Numer. Anal., 25, 908-926. Zbl0661.65076MR954791
- [15] J. CHAEFFER, 1990, Personal communication.
- [16] A. STROUD, 1974, Numerical Quadrature and Solution of Ordinary Differential Equations, Applied Mathematical Sciences 10, Springer-Verlag, New York, 1974. Zbl0298.65018MR365989
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.