Page 1 Next

Displaying 1 – 20 of 46

Showing per page

A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems

Torsten Linß (2014)

Applications of Mathematics

FEM discretizations of arbitrary order r are considered for a singularly perturbed one-dimensional reaction-diffusion problem whose solution exhibits strong layers. A posteriori error bounds of interpolation type are derived in the maximum norm. An adaptive algorithm is devised to resolve the boundary layers. Numerical experiments complement our theoretical results.

Defect correction and a posteriori error estimation of Petrov-Galerkin methods for nonlinear Volterra integro-differential equations

Shu Hua Zhang, Tao Lin, Yan Ping Lin, Ming Rao (2000)

Applications of Mathematics

We present two defect correction schemes to accelerate the Petrov-Galerkin finite element methods [19] for nonlinear Volterra integro-differential equations. Using asymptotic expansions of the errors, we show that the defect correction schemes can yield higher order approximations to either the exact solution or its derivative. One of these schemes even does not impose any extra regularity requirement on the exact solution. As by-products, all of these higher order numerical methods can also be...

Fractional-order Bessel functions with various applications

Haniye Dehestani, Yadollah Ordokhani, Mohsen Razzaghi (2019)

Applications of Mathematics

We introduce fractional-order Bessel functions (FBFs) to obtain an approximate solution for various kinds of differential equations. Our main aim is to consider the new functions based on Bessel polynomials to the fractional calculus. To calculate derivatives and integrals, we use Caputo fractional derivatives and Riemann-Liouville fractional integral definitions. Then, operational matrices of fractional-order derivatives and integration for FBFs are derived. Also, we discuss an error estimate between...

Frequency analysis of preconditioned waveform relaxation iterations

Andrzej Augustynowicz, Zdzisław Jackiewicz (1999)

Applicationes Mathematicae

The error analysis of preconditioned waveform relaxation iterations for differential systems is presented. This analysis extends and refines previous results by Burrage, Jackiewicz, Nørsett and Renaut by incorporating all terms in the expansion of the error of waveform relaxation iterations in the Laplace transform domain. Lower bounds for the size of the window of rapid convergence are also obtained. The theory is illustrated for waveform relaxation methods applied to differential systems resulting...

Currently displaying 1 – 20 of 46

Page 1 Next