Stabilité numérique de l'algorithme de Levinson

Evariste Kazamarande; Pierre Comon

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1995)

  • Volume: 29, Issue: 2, page 123-170
  • ISSN: 0764-583X

How to cite

top

Kazamarande, Evariste, and Comon, Pierre. "Stabilité numérique de l'algorithme de Levinson." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.2 (1995): 123-170. <http://eudml.org/doc/193770>.

@article{Kazamarande1995,
author = {Kazamarande, Evariste, Comon, Pierre},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {numerical stability; conditioning; error bounds; Schur algorithm; linear Toeplitz system; performance; Levinson-Durbin algorithm; Cholesky algorithm; Toeplitz matrix},
language = {fre},
number = {2},
pages = {123-170},
publisher = {Dunod},
title = {Stabilité numérique de l'algorithme de Levinson},
url = {http://eudml.org/doc/193770},
volume = {29},
year = {1995},
}

TY - JOUR
AU - Kazamarande, Evariste
AU - Comon, Pierre
TI - Stabilité numérique de l'algorithme de Levinson
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 2
SP - 123
EP - 170
LA - fre
KW - numerical stability; conditioning; error bounds; Schur algorithm; linear Toeplitz system; performance; Levinson-Durbin algorithm; Cholesky algorithm; Toeplitz matrix
UR - http://eudml.org/doc/193770
ER -

References

top
  1. [1] S. T. ALEXANDER & ZONG M. RHEE, 1987, Analytical Finite Precision Results for Burg's Algorithm and the Autocorrelation Method for Linear Prediction, IEEE Trans. on ASSP, 35, n° 5, pp. 626-634. 
  2. [2] R. R. BITMEAD & B. D. O. ANDERSON, 1980, Asymptotically Fast Solution of Toeplitz and Related Systems of Linear Equations, Linear Algebra & Its Applications, 34, pp. 103-116. Zbl0458.65018MR591427
  3. [3] A. BJÖRCK, 1991, « Errors Analysis of Least Squares Algorithms », NATO ASI Series, vol. F 70, Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms, Edited by G. H, Golub and P. Van Dooren, Springer-Verlag Berlin Heidelberg, pp. 41-73. Zbl0757.65047MR1150058
  4. [4] F. L. BAUER, 1974, « Computational Graphs and Rounding Error », SIAM J. Numer. Anal, vol. 11,p. 87-96. Zbl0337.65028MR356482
  5. [5] J. R. BUNCH, 1985, « Stability of Methods for Solving Toeplitz Systems of Equations », SIAM J. Sci. Stat. Comput., vol. 6, n° 2, pp.349-364. Zbl0569.65019MR779410
  6. [6] J. R. BUNCH, 1987, « The Weak and Strong Stability of Algorithms in Numerieal Linear Algebra », Linear Algebra & Its Applications, 88/89, pp.49-66. Zbl0652.65032MR882440
  7. [7] J. R. BUNCH, 1991, « The weak Stability of Algorithms of Matrix Computations », NATO ASI Séries, vol. F 70, Numerical Linear Algebra Digital Signal Processing and Parallel Algorithms, Edited by G. H. Golub and P. Van Dooren, Springer-Verlag Berlin Heidelberg, pp. 429-433. Zbl0738.65011MR1150074
  8. [8a] J. R. BUNCH, W. DEMMEL & C. F. VAN LOAN, 1989, « The Strong Stability of Algorithms for solving Symmetric Linear Systems », SIAM J. Matr. Anal. Appl., vol. 10, n° 4, pp. 494-499. Zbl0687.65021MR1016798
  9. [8b] F. CHATELIN, V. FRAYSSÉ & T. BRACONNIER. 1993, « Qualitative Computing: elements of a theory for finite precision computation », Tech. report CERFACS TR/PA/93/12. Lecture Notes for the Workshop on Reliability of Computations, March 30-April 1, Toulouse. 
  10. [9] G. CYBENKO, 1980, « The Numerical Stability of the Levinson-Durbin Algorithm for Toeplitz Systems of Equations», SIAM J. Sci. Stat. Comput., vol. 1, n°3, pp. 303-319. Zbl0474.65026MR596026
  11. [10] P. FRANÇOIS, 1989, Contribution à l'Etude de Méthodes de Contrôle Automatique de l'Erreur d'arrondi, la Méthodologie SCALP ; Thèse de Doctorat de l'INPG, Grenoble. 
  12. [11] G. H. GOLUB & C. F. VAN LOAN, 1983, Matrix Computations, John Hopkins University Press. Zbl0559.65011MR733103
  13. [12] C. GUEGUEN, 1987, « An Introduction to Displacement Ranks and Related Fast Algorithms», Signal Processing, vol. XLV, Lacoume Durrani Stora Editors, Elsevier, pp. 705-780. 
  14. [13] F. G. GUSTAVSON & D. Y. YUN, 1989, « Fast Algorithm of Rational Hermite Approximation and Solution of Toeplitz Systems», IEEE Trans. on Circuits and Systems, vol. CAS-26, n° 9, pp. 750-755. Zbl0416.65008MR549385
  15. [14] P. HENRICI, 1982, Essentials of Numerieal Analysis, Wiley. MR655251
  16. [15] F. de HOOG, « A New Algorithm for Solving Toeplitz Systems of Equations», Linear Algebra & Its Applications, 88/89, pp. 123-138. Zbl0621.65014MR882445
  17. [16] K. JAINANDUNSING & E. F DEPRETTERE, « A New Class of Parallel Algorithms for Solving Systems of Linear Equations», SIAM J. Sci. Stat. Comput., vol. 10, n°5, pp.880-912. Zbl0677.65021MR1009545
  18. [17] T. KAILATH, A. VIEIRA & M. MORF, 1978, « Inverse of Toeplitz Operators Innovations and Orthogonal Polynomials », SIAM Review, vol.20, n° 1, pp. 106-119. Zbl0382.47013MR512865
  19. [18] J. MAKHOUL, 1975, « Linear Prédiction: A Tutorial Review», Proceeding of IEEE, vol.63, n° 4, pp.561-580. 
  20. [19] R. E. MOORE, 1966, Interval Analysis, Prentice-Hall, Englewood cliffs, NJ. Zbl0176.13301MR231516
  21. [20] P. H. STERBENZ, 1974, Floating Point Computation, Prentice-Hall, Englewood cliffs, NJ. MR349062
  22. [21] G. W. STEWART, 1973, Introduction to Matrix Computations, Academic Press. Zbl0302.65021MR458818
  23. [22] F. STUMMEL, « Perturbation Theory for Evaluation Algorithms of Arithmetic Expressions », Math. Comput., vol. 37, n° 156, pp. 435-473. Zbl0515.65039MR628707
  24. [23] W. F. TRENCH, 1964, « An Algorithm For the Inverson Finite Toeplitz Matrices», SIAM J. Applied Math., vol. 12, pp. 512-522. Zbl0131.36002MR173681
  25. [24] J. H. WlLKINSON, 1963, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, NJ. Zbl1041.65502MR161456
  26. [25] J. H. WlLKINSON, 1965, The Algebraic Eigenvalue Problem, Oxford University Press, London Zbl0258.65037MR184422
  27. [26] S. ZOHAR, 1969, « Toeplitz Matrix Inversion : The Algorithm of W. F. Trench», Journal of the ACM, vol. 16, n° 4, pp. 592-601. Zbl0194.18102MR247762
  28. [27] S. ZOHAR, 1974, « The Solution of a Toeplitz set of Linear Equations », Journal of ACM, vol. 21, n° 1, pp. 272-276. Zbl0276.65014MR343567
  29. [28] T. F. CHAN & P. C. HANSEN, 1992, « A Look-ahead Levinson Algorithm for Indefinite Toeplitz Systems », SIAM J. Matrix Anal. Appl., vol. 13, n° 2, pp. 490-506. Zbl0752.65020MR1152765
  30. [29] D. J. HIGHAM & N. J. HIGHAM, 1992, « Backward Error and Condition of Structured Linear Systems », SIAM J. Matrix Anal. Appl., vol. 13, n° 1, pp. 162-175. Zbl0747.65028MR1146659
  31. [30] C. J. ZAROWSKI, 1992, « A Schur Algorithm and Linearly Connected Processor Array for Toeplitz-plus-Hankel Matrices», IEEE Trans. on Signal Processing, vol. 40, n° 8, pp. 2065-2078. Zbl0756.65042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.