Equiconvergence of some simultaneous Hermite-Padé interpolants

Marcel G. de Bruin; A. Sharma

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1995)

  • Volume: 29, Issue: 4, page 477-503
  • ISSN: 0764-583X

How to cite

top

de Bruin, Marcel G., and Sharma, A.. "Equiconvergence of some simultaneous Hermite-Padé interpolants." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 29.4 (1995): 477-503. <http://eudml.org/doc/193782>.

@article{deBruin1995,
author = {de Bruin, Marcel G., Sharma, A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Padé approximation; rational approximation},
language = {eng},
number = {4},
pages = {477-503},
publisher = {Dunod},
title = {Equiconvergence of some simultaneous Hermite-Padé interpolants},
url = {http://eudml.org/doc/193782},
volume = {29},
year = {1995},
}

TY - JOUR
AU - de Bruin, Marcel G.
AU - Sharma, A.
TI - Equiconvergence of some simultaneous Hermite-Padé interpolants
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1995
PB - Dunod
VL - 29
IS - 4
SP - 477
EP - 503
LA - eng
KW - Padé approximation; rational approximation
UR - http://eudml.org/doc/193782
ER -

References

top
  1. [1] E. B. SAFF, A. SHARMA and R. S. VARGA, 1981, An extension to rational functions of a theorem of J. L. Walsh on the differences of interpolating polynomials, R.A.I.R.O. Anal. Numér, 15, no. 4, pp.371-390. Zbl0485.41003MR642498
  2. [2] R. R. GRAVES-MORRIS and E. B. SAFF, 1984, A de Montessus theorem for vector valued interpolants, Rational Approximation and Interpolation, Proceedings Tampa, Florida 1983 (R R. Graves-Morris and E. B. Saff, eds.), Springer Verlag, Lecture Notes in Mathematics, 1105, pp. 227-242. Zbl0554.41025MR783257
  3. [3] A. SHARMA, 1986, Some recent results on Walsh theory of equiconvergence, Approximation Theory V (Ch.K. Chui, L. L. Schumaker and J. D. Ward, eds.), Academic Press, New York, pp. 173-190. Zbl0612.42011MR903686
  4. [4] M. P. STOJANOVA, 1988, Equiconvergence in rational approximation of meromorphic functions, Constr. Approx. 4, pp. 435-445. Zbl0677.41003MR956178
  5. [5] M. G. DE BRUIN, 1990, Some aspects of simultaneous rational approximation, Numerical Analysis and Mathematical Modelling, Banach Center Publications Vol. 24, PWN-Polish Scientific Publishers, Warsaw, pp.51-84. Zbl0733.41025MR1097402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.