### 517.53

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

This paper is an introduction to formal orthogonal polynomials and their application to Padé approximation, Krylov subspace methods for the solution of systems of linear equations, and convergence acceleration methods. Some more general formal orthogonal polynomials, and the concept of biorthogonality and its applications are also discussed.

In the non-normal case, it is possible to use various look-ahead strategies for computing the elements of a family of regular orthogonal polynomials. These strategies consist in jumping over non-existing and singular orthogonal polynomials by solving triangular linear systems. We show how to avoid them by using a new method called ALA (Avoiding Look-Ahead), for which we give three principal implementations. The application of ALA to Padé approximation, extrapolation methods and Lanczos method for...